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Abstract. State space generation suffers from the typical combinatorial explo-
sion problem when dealing with industrial specifications. In particular, memory
consumption while storing the state space must be tackled to verify safety proper-
ties. Decision Diagrams are a way to tackle this problem. However, their perfor-
mance strongly rely on the way variables encode a system. Another way to fight
combinatorial explosion is to hierarchically encode the state space of a system.
This paper presents how we mix the two techniques via the hierarchization of a
precomputed variable order. This way we obtain a hierarchical static order for
the variables encoding a system. This heuristic was implemented and exhibits
good performance.
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1 Introduction

Context Model Checking is getting more and more accepted as a verification technique
in the design of critical software such as transportation systems. However, the associ-
ated state space generation suffers from the typical combinatorial explosion problem
when dealing with industrial specifications. In particular, memory consumption when
computing the state space must be tackled to verify safety properties.

Decision Diagrams, such as Binary Decision Diagrams [6], are now widely used
as an extremely compact representation technique of state spaces [8]: a state is seen
as a vector of values and a state space represented by decision diagrams is a set of
such vectors where identical extremities are shared. Performances of decision diagram
based techniques are thus strongly related to the way values are ordered to encode
a system. Bad performance are observed when the encoding does not exhibit a good
sharing factor.

To overcome the problem of shared parts limited to extremities, a hierarchical class
of decision diagrams has recently been introduced: Set Decision Diagrams (SDD) [16].
Here, values on the arcs may also be sets of vectors of values represented by decision
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diagrams (and recursively we can have vectors of vectors of... of values), defining a
hierarchical structure. This way, sub-structures are also shared, the same way the ex-
tremities are, allowing more compression. An application to the philosopher problem
shows an impressive compression ratio [18].

Problem Since finding the variable order with the best sharing factor is an NP-complete
problem [3], many heuristics have been proposed (see [27] for a survey).

Variable ordering problem can be static (the order is computed before the state space
enumeration) or dynamic (the order is adapted during the state space enumeration). This
work focus on static variable ordering only.

When dealing with hierarchy, the problem is to find a hierarchical structure where
sub-structures can be shared. No work has been done, to the best of our knowledge,
concerning the definition of heuristics in such a context.

Contribution This paper proposes ways to order variables in a hierarchical way. To do
so, we reuse heuristics for non-hierarchical decision diagrams to hierarchical ones. Our
heuristic deals with P/T net because they provide easy ways to exploit their structure.

Experiments and measures show that the hierarchical version of the order performs
better than the flat one in most cases.

Structure of the paper Section 2 details our objective and refers to some related works.
Then, Section 3 introduces the main definitions we use in the paper. Section 4 describes
our approach and its performances before some concluding remarks in Section 5.

2 Objectives and Related Work

Context Historically, Decision Diagrams were first used to encode models for boolean
formulæ via Binary Decision Diagrams [6] (BDDs). Therefore, variables have boolean
values in this structure.

In BDDs, each variable in a vector is represented by a node and its value labels
an arc connecting the node to its successor in the vector as shown in Figure 1(a). A
terminal node (terminal for short) is added to the end of the structure. All root nodes
are shared, all identical terminal structures are shared and all nodes have distinct labels
on their outgoing arcs. These features ensure a canonical representation of the vectors:
i.e. no vector can be represented more than once.

Since BDDs has been successfully used in model checking (SMV [15] and VIS
[5] model checkers), numerous kinds of decision diagrams have been developed and
employed in this domain. Let us cite Interval Decision Diagram – IDDs [29] – where
variables values are intervals (used in DSSZ-MC [20], a model checker for P/T nets4),
Multi-valued Decision Diagram – MDDs [25] – where variables values are integers
(used in SMART [13]), Set Decision Diagrams – SDDs [16] – that use integers as

4 see definition 3.1.
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variables values and introduce hierarchy (used in the ITS [30] model checker) and sig-
maDD [7], an instantiation of SDDs to represent terms in term-writing area. Decision
diagrams have also been extended to associate values to each vector (MDDs and Alge-
braic Decision Diagrams [2]). We do not consider such extensions in this work.

u v w x y z 10 01011

(a) BDD encoding

u,v w,x y,z

a b 11 0

1

(b) SDD encoding

Fig. 1. Encoding the initial state of a system with BDD and SDD

Let us now illustrate why hierarchy is a potentially powerful feature. Figure 1 de-
picts two Decision Diagrams based representation of the boolean formula u∧ v̄∧w∧
x̄∧ y∧ z̄. Figure 1(a) is BDD based, while Figure 1(b) is SDD based. Since values of
pairs of variables (u,v),(w,x),(y,z) are the same, they can be shared. This is done in
Figure 1(b) by adding the sub-structure with variables a and b. This second structure is
more compact that the first one. Let us note that the two terminal nodes are not merged
to ease readability of the figure, but should be, as it is in memory.

Contribution To the best of our knowledge, no work has been done to automatically
define a hierarchical structure. Such structures are now either defined manually, or di-
rectly encoded in higher level formalism such as ITS [30].

Since sub-structures are shared in SDD, we aim at finding parts of the model (in our
case P/T nets) that are partially identical thanks to structural analysis. A hierarchical
structure is then defined to hierarchically organize these parts.

In this paper, we propose an heuristic reusing an existing variable order to build
hierarchical clusters to be encoded using SDD (see Section 4). The existing variable
order we use in input of our heuristic can be computed by state of the art algorithms.
We observe that, in most cases, hierarchization provides good results.

State of the Art Heuristics to compute variable order to optimize decision diagrams
encoding have been studied in several works [27]. Among them, let us report the two
following ones, for which an implementation is available.

FORCE [1] computes the forces acting upon each variable and move them in the
corresponding direction. In the context of P/T nets, this corresponds to minimizing the
distance between places linked to the same transition. The ”average position” of places
(e.g. their center of gravity) is recursively computed until stabilization of the algorithm.

The DSSZ-MC model checker for ordinary P/T net, based on Interval Decision Dia-
grams proposes another heuristic: NAO99 [20]. It exploits the net structure to associate
a weight to places and then uses it to compute the variable order.

So far, no heuristic exploiting hierarchical order has been proposed.
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3 Preliminary Definitions

This section first recalls the definition of Petri Nets and SDD. Then, it introduces the
notions we use to describe our hierarchization algorithm.

3.1 P/T nets

P/T nets stands for Place/Transition nets (also known as Petri nets). They are one of the
numerous models used to describe parallelism.

Definition 1 (P/T nets). A P/T net is a 4-tuple N = 〈P,T,Pre,Post〉 where:

– P is a finite set of places,
– T is a finite set of transitions (with P∩T = /0),
– Pre : P×T → N (resp. Post : P×T → N) is the precondition (resp. postcondition)

function.

A marking M of N is a function associating an integer to each place: M : P→ N.
The initial marking is denoted M0.

The firing of a transition t changes the marking M1 into a new marking M2 (denoted
M1[t > M2):

– t can be fired iff ∀p ∈ P,Pre(p, t)≤M1(p),
– ∀p ∈ P,M2(p) = M1(p)+Post(p, t)−Pre(p, t).

P5

T5

T3T2T1

P4P3P2
•
P1

T4

T4

•
P1 P2 P3 P4

T1 T2 T3

T4

•
P1 P2 P3 P4

T1 T2 T3 T5

P5

Fig. 2. A simple P/T net

A P/T net is thus a bipartite graph where vertices are places and transitions. Places
are depicted by circles (the one of Figure 2 has five places P1,P2,P3, P4 and P5), tran-
sitions by rectangles (the one of Figure 2 has five transitions T1,T2,T3, T4 and T5), and
an arc is drawn between a place (resp. transition) and a transition (resp. place) iff the
precondition (resp. postcondition) function associates a non null value to the couple. 1
is assumed when no value is associated to arcs in Figure 2). A marking is depicted by
black dots in places (in Figure 2 the initial marking of place P1 is 1).

Note 1 (Successor and predecessor sets). These notations are used later in the paper.
The successor set of a place p (resp. transition t) is denoted p• = {t | Pre(p, t)≥ 1}
(resp. t• = {t | Post(p, t)≥ 1}). The predecessor function is defined accordingly:
•p = {t | Post(p, t)≥ 1} and •t = {t | Pre(p, t)≥ 1}. Those notations are extended to
sets of nodes S⊆ P∪T : S• =

⋃
s∈S s• and •S =

⋃
s∈S
•s.
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3.2 Hierarchical Set Decision Diagram [16]

SDDs are data structures representing sets of assignments sequences of the form ω1 ∈
s1;ω2 ∈ s2; . . . ;ωn ∈ sn where ωi are variables and si are sets of values. In [16] no vari-
able ordering is assumed, and the same variable can occur several times in an assign-
ment sequence. The terminal (labelled by 1) represents the empty assignment sequence,
that terminates any valid sequence. Another terminal labelled by 0 is also used to rep-
resent the empty set of assignment sequences that terminates invalid sequences5. In the
following, Var denotes a set of variables, and for any ω ∈ Var, Dom(ω) represents the
domain of ω which may be infinite.

Definition 2 (Set Decision Diagrams). Let Σ be the set of SDDs. δ ∈ Σ is inductively
defined by:

– δ ∈ {0,1}or
– δ = 〈ω,π,α〉 with:
• ω ∈Var.
• A partition π = s0 ∪ · · · ∪ sn is a finite partition of Dom(ω), i.e.
∀i 6= j,si∩ s j = /0,si 6= /0,with n finite.

• α : π→ Σ, such that ∀i 6= j,α(si) 6= α(s j).

Elements of Dom(ω) can be integers, real numbers, vectors, etc. These elements
can also be sets represented by SDDs, in which case a hierarchical decision diagram
structure is obtained.

SDDs are used here to efficiently store P/T nets reachable markings. We need to define
a hierarchical structure (see heuristic described in section 4) and automatically encode
the Pre and Post operations.

SDDs also introduce homomorphisms, a “tool box” to manipulate diagrams. Three
kinds of homomorphisms are used here: one to access the desired variable in the hier-
archy, one to test and decrement the value (Pre operation) and the last one to increment
the value (Post operation). Further description is out of scope. See [16] for more details
on homomorphisms.

P1 P2 P3 P4 11 0 0 P5 00

P1 P2 P3 P4 10 1 0 P5 00

P1 P2 P3 P4 10 0 1 P5 00

P1 P2 P3 P4 10 0 0 P5 01

P1 P2 P3 P4 10 0 0 P5 10

(a) All paths for the state space

P1 P2 P3 P4

P2 P3 P4

0

001

00
11

1P5

P5

0

1

0

0

1

(b) The corresponding SDD without hierarchy

Fig. 3. SDD-based representation of the state space for the P/T net of Figure 2

5 the 0 terminal and paths leading to the 0 terminal are usually not represented in the structure
to save memory.
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Let us illustrate the encoding of a P/T net on the example presented in Figure 2.
The five states in the reachability graph can be described in the SDD paths shown in
Figure 3(a). This leads to the corresponding SDD structure presented in Figure 3(b).
This structure does not take advantage of hierarchy.

3.3 Hierarchical Static Order

Definition 3 describes the structure used in this work to efficiently encode a P/T net. We
compose two techniques: the computation of a static order and the use of hierarchical
decision diagrams.

Definition 3 (Hierarchical Static Order). A hierarchical static order is represented as
a list of elements. Each element can be either :

– a list of elements e1, . . . ,en denoted [e1, . . .en],
– a place of the encoded P/T net (each place of the net is encoded only once).

Figure 4 shows the use of a hierarchical static order, [[P3,P4,P5], [P1,P2]], to encode
the state space for the P/T net of Figure 2. We observe that the sub-structure P1,P2 is not
shared with the P4,P5 one because of the different labelling of the nodes. This problem
is tackled in section 3.4.

H1

1

H2H2

P1 P2

1
P1 P2

0

1

0

1

0

Level 1 Level 2

P4 P5

1
P4 P5

0

1

0

1

0

P3

P3 0

0

1

Fig. 4. Final SDD structure with hierarchy

It is also possible to flatten the hierarchy order. This is useful to preserve the prece-
dence relation for each variable and compare the hierarchical static order to its related
static order.

Definition 4 (Flattened Hierarchical Static Order). Let us define a flattened hierar-
chical static order f = p1, p2, ..., pn with pi ∈ P. f = F(h) where h is a hierarchical
static order. We define F as follows:

– F(h = [h1, ...hn]) = [F(h1), ...,F(hn)], where hi are the sub-elements of h,
– F(h = [p]) = [p] when the element is reduced to a place.

As an example, the flatten order of [[P3,P4,P5], [P1,P2]] is [P3,P4,P5,P1,P2].
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3.4 Anonymization

Since no hierarchical static order was originally defined for SDDs, variable names were
initially associated to SDD nodes. This way, homomorphisms could be defined in such
a general structure. In Figure 4, nodes P4 and P5 are not shared with P1 and P2 because
of their different labeling. We thus propose to remove it. Thus the encoding without
labelling is said to be anonymized.

This labeling information is redundant when a hierarchical static order is defined
because the path followed in the structure is sufficient to retrieve the variable name
associated to each node.

Definition 5 (Anonymous SDD). An anonymous SDD is defined over a set Var re-
duced to a unique variable: |Var |= 1.

v

v

1

vv v

1
v v

0

1

0

1

0

Applies on
places P1,P2

Applies on
places P3,P4,P5

v

v

1

0

0

Level 1 Level 2

Fig. 5. Final SDD structure with hierarchy and anonymization

Figure 5 illustrates the advantages of anonymization on the SDD structure presented
in Figure 4. Since nodes in the second level have similar structures, homomorphisms
must be aware of the path followed at the first level: e.g. if the second level is considered
as a value of the root node of the first level, then nodes are implicitly labelled P1 and
P2, otherwise, they are labelled P3, P4 and P5. The final hierarchical SDD contains 9
nodes instead of 13 in Figure 4.

Remark in this specific example, let us notice that the flattened SDD encoding in
Figure 3(b) holds as many nodes as in the hierarchical one of Figure 5. This is a side
effect due to the small size of an understandable example. Benchmarks provided later
in this paper show the benefits of hierarchy for large models.

4 Hierarchization of Computed Flat Static Orders

As presented in Section 3.3, we must increase the number of identical modules to in-
crease the sharing via hierarchy and anonymization. A first approach is to define the
hierarchy when modeling the system. In [30], a new type of formalism (ITS for In-
stantiable Transition Systems) allows such a hierarchical modeling with an appropriate
relation to SDD. This relation allows an efficient encoding when the model has symme-
tries. As an example, the state space for the philosopher model with 220,000 philosophers
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could be encoded. However, this technique assumes that the system designer is able to
build this ”well formed” hierarchy.

To automate the building of a hierarchical structure, we could have used symmetries
as defined in [9] for colored net and [28] for P/T net. But this would lead to a restrictive
application of the technique. For instance the model in Figure 2 does not exhibit any
symmetry for set of places [P4,P5] and [P1,P2] but Figure 5 shows that the projection of
the state spaces of these sets are the same.

So, we propose to split an already computed “flat” variable static order into mod-
ules. Then, a hierarchical structure is defined on top of these modules. This approach
allows to adapt all the previously proposed heuristics to compute static variable orders.
It also allows us to validate the gain we can obtain from the hierarchy. It is, however,
a bit rough since no clue is given on modules similarity. We thus call this heuristic:
N-Cut-Naive Hierarchy.

4.1 Algorithm

The main idea of this heuristic is to create a hierarchy of decision diagrams representing
portions of markings that are similar ones to the others, thus increasing the sharing
of elements. We exploit the hierarchical static order together with the anonymization
mechanism (introduced in section 3.4).

N-Cut-Naive(X ,N,Order)
begin

Input: X an integer: Hierarchy depth
Input: N ≥ 1 : Number of elements in a level of hierarchy
Input: Order 6= /0 : The order to split

1 if X > 0 then
2 splitOrder = /0

3 counter = 0
4 subStructure = /0

5 for element ∈ Order do
6 if counter <= N then
7 subStructure.addQueue(element)
8 end
9 else

10 splitOrder.addQueue(subStructure)
11 subStructure = /0

12 counter = 0
13 end
14 counter = counter+1
15 end
16 Order =N-Cut-Naive(X−1,N,splitOrder)
17 end
18 return Order

end

Fig. 6. Algorithm of the N-Cut-Naive Hierarchy heuristic

Our heuristic is presented in Figure 6. It requires in input: i) a precomputed flat
order (Order), ii) the maximum number of elements in a module (N) and iii) the height
of the hierarchical structure (X).
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To give an intuition of the way our algorithm behaves, let us assume the following
input order:

[P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12]

where Pi are variables encoding places of a P/T Net. We split the initial flat order into
modules of size n specified by the user. When the number of modules is large enough,
the list of modules is recursilvely split to add an extra-level to the hierarchical structure.
Figure 7 depicts the obtained hierarchical structure when N = 2. Here, three levels are
needed H1,x, H2,x and H3,x.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

H1,1
H1,2 H1,3 H1,4 H1,5 H1,6

H2,1
H2,2 H2,3

H3,1 whole net

Fig. 7. Computed Static Hierarchical Order with X = 3 and N = 2

The size of the module is a critical parameter: it is obvious that if we construct
two modules by randomly choosing an identical number of places, the sharing factor
between the two modules usually decreases when the parameter N grows. We have the
same kind of effect with parameter X .

In the representation of Figure 7, sub-structures H1,1 and H1,2 can be represented
by a single SDD if P1,P2 valuations are identical to P3,P4 ones. At the next level, the
condition is more difficult to satisfy since a single representation for H2,1 and H2,2
requires that H1,1,H1,2 are identical to H1,3,H1,4 (e.g. the valuations of P1,P2,P3,P4 is
identical to P5,P6,P7,P8).

Let us note that this computed static order hierarchy represents a sharing potential
that is only possible when sub-structures are identical. This is where the structure of the
P/T net introduces constraints. All hierarchical structures do not systematically exhibit a
good sharing factor but we statistically observe that, for small values of X , the algorithm
provides good results.

We have empirically computed (see experiment 1 in section 4.2) that, for N = 2 and
X = dlogN(| P |)e, the sharing factor is close to the optimal one.

4.2 Performance Analysis

This section evaluates the performance of the N-Cut-Naive Hierarchy heuristic com-
pared to given flat orders. Evaluation is done for state space generation. Experiments are
performed using a tool developed within the NEOPPOD project to verify safety prop-
erties: PNXDD [21]. Performances are computed on an 2.80GHz Intel Hyperthreaded
Xeon computer with 14Gbyte of memory.
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Models We have selected three types of models to assess our contribution:

– “Colored” model that are P/T nets derived from colored models by unfolding6. In
this category, we can use the size of color domains as a parameter to increase the
size of the obtained models.

– K-Bounded models7 for which the number of initial tokens is the scaling parameter.
– Cases studies models that are extracted from projects involving industrial problems

and are thus larger. Neoppod and PolyORB are not fully colored since they con-
tain some uncolored places that have an effect on the unfolding into P/T. MAPK
is purely K-bounded. These models have a more complex structure from which
extraction of patterns is more difficult.

6 Here, unfolding means the expansion of a colored net into its corresponding P/T places as
presented in [23]. It suppresses all 0-bounded places and the transitions pre and post-conditions
of such places.

7 Let us note K-Bounded models where K > 1 and K is the maximal number of tokens for each
place in any reachable marking

scaling
Model parameter Places Transitions Description

Colored Models

Philosopher [17]

300 1,200 1,500
500 2,000 2,500 Classical multi-process synchronization problem. The scaling
800 3,200 4,000 parameter corresponds to the number of philosophers around the

2,000 8,000 10,000 table.
4,000 16,000 20,000

Peterson [26]

2 30 30
3 102 126 Concurrent programming algorithm for mutual exclusion. The scaling
4 244 332 parameter corresponds to the number of processes to be synchronized.
5 480 690

Token Ring [11]

5 40 40
10 80 80 Classical local network protocol communication. The scaling
100 800 800 parameter corresponds to the number of processes involved in
200 1,600 1,600 the ring.
500 4,000 4,000

K-bounded Models

FMS [14] 10 to 30 22 20 Model of a Flexible Manufactoring System. The scaling parameter
changes the initial number of tokens in several places of the model.

Kanban [13] 50 to 16 16 Kanban system modeling. The scaling parameter changes the number
3,000 of tokens in several places of the model.

Cases Studies Models

Neoppod [10]

2 49 30
3 120 118 Broadcast Consensus Protocol in a distributed database system when
4 229 330 the set of masters nodes in the system are electing the primary master.
5 382 753 The scaling parameter corresponds to the number of master nodes.
6 585 1,498

PolyOrb [22]

2 222 962 Models the core of a middleware that manages parallelisms between
3 297 1,444 a set of thread to be operated. We use a configuration with 4 event
4 372 1,925 sources, and an query FIFO with 4 slots. The scaling parameter
5 447 2,414 corresponds to the number of threads that are really activated in the
6 522 2,902 middleware.

MAPK [19] 8 to 80 22 30 Bio-chimical modeling. The scaling parameter changes the number
of tokens in several places of the model.

Table 1. Presentation of the models selected for our benchmark
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The two first types of benchmarks correspond to typical combinatorial explosion
situations to be handled in state space generation. The third one shows more “realistic”
situations from an industrial point of view.

Table 1 summarizes for each model: its origin, what it is modeling, the meaning of
its scaling parameter, and its size (number of places and transitions) according to the
scaling parameters (the number of instance corresponds either to the cardinality of a
color domain or to the number of tokens in the place modeling the initial state of an
actor).

Evaluation Procedure Evaluation is performed on each model and for various scaling
parameters using the following procedure:

1. produce a flat order using external ways (e.g. from the state of the art),
2. apply our heuristic to generate a hierarchical static order,
3. generate the state space using the flat order as well as the hierarchical static one

(PNXDD is able to import a given precomputed order, flat or hierarchical) and
compare them,

To compare the generated state spaces, we consider the following parameters:

– the number of nodes in the final SDD diagram and the total number of nodes used
during the computation of the state space (peak8), for the studied hierarchical order
and its associated flattened version,

– CPU time in seconds used for computation,
– memory used for computation in Mbytes. This involves the nodes used while com-

puting the state space, as well as the operation caches used to speed up SDD oper-
ations [4].

Experiments Three experiments have been elaborated.
Experiment 1 aims at studying the impact of the hierarchical structure height (pa-

rameter X in function N-Cut-Naive). To do so, we use an existing flat static order Order
computed using NOA99. We apply function N-Cut-Naive(X ,N,Order) to build a hi-
erarchical order before evaluating the memory required to store the state space. This
experience shows that if we use N = 2 and X = dlogN(| P |)e we are usually close to the
optimal values for X and N by studying the obtained performance with different values
of N (in {2,5}) and X (in {0,5} 9 except for Philosopher (300) where a wider range
is used because of the large number of places). Performances strongly depend on the
initial flat order.

Experiment 2 uses the values of N and X validated in experiment 1. Here the ob-
jective is to show that hierarchy allows us to study more complex models than the flat
version does. We compare here the performance obtained using NOA99 and FORCE

8 Once a node is created, it is never destroyed in this implementation. So the term peak refers
here to the total number of nodes used for the computation.

9 When X = 0, the hierarchical order becomes a flat one.
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heuristics (in a flat and hierarchical version) for models with larger instances than in
experiment 1.

In experiment 3, we check the general behavior of hierarchization to be sure that
there is no side-effect due to the selected heuristics (FORCE and NOA99). To do so, we
select two models from the “case study” group: Neoppod (mostly colored) and MAPK
(strictly K-bounded) to check the behavior of our heuristic on 500 randomly generated
flat static orders.

4.3 Experiment 1: Effects of Parameters X and N

This experiment aims at studying the impact of the hierarchical structure height in order
to find an appropriate value to be used in our heuristic.

Results They are displayed in Figure 8 that shows the evolution of memory consump-
tion according to values of X and N (each value of N is a curve, and X values are shown
in abscissa). The table in Figure 8(i) summarizes memory consumption in the best case,
the worst case, and for the pair 〈X ,N〉 when X = dlogN(| P |)e and N = 2 (later referred
to as the ”computed solution”).

Conclusions Almost all curves for a fixed N (variation of X) have the same shape:
for a given value of N, performance start to be better while X increases. However,
after a while, performance decreases when X continues to increase (performance loss is
important in most examples). An explanation could be that adding a hierarchical level
is only of interest when many modules are shared in its immediate sub-level. This is
unlikely the case when the number of modules in this sub-level is not great enough
(when splitting the flat order, we are not sure to obtain identical modules). This is why
we decided to use the following formula X = dlogN(| P |)e.

Table in Figure 8(i) shows that in most cases, our automatic computation of X for
N = 2 (value selected in our heuristic) provides performances that are reasonably close
to the best solution.

4.4 Experiment 2: Gain with Respect to Existing Flat Orders Heuristics

The aim is to compare our N-Cut-Naive Hierarchy heuristic performance to the ones
of the two flat static orders we introduced in section 2: FORCE [1] and NOA99 [20]
(respectively noted F and N in Tables 2 to 4). We compare the state space generated for
the benchmark models. For each scaling parameter, we measure:

– The total SDD nodes once the state space is produced,
– The peak SDD nodes when producing the state space,
– Computation time in seconds,
– The peak of memory consumption (in Mbytes).

In the tables, MOF means that the experiment could not be computed due to the lack
of Memory (> 10 Go). SOF means that execution reached a Stack OverFlow (we used

12
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(d) FMS (10)

Mbytes Peterson 4

X\N N=2 N=3 N=4 N=5
Peterson 4 0 483,53 483,53 483,53 483,53

1 236,75 173,59 142,15 118,19
2 142,06 102,54 112,43 164,90
3 98,32 167,00 693,89 3166,23
4 110,68 889,75 694,14 3167,02
5 180,11 890,25 693,77 3166,39

MIN= 98,32 MAX= 3167,02
Gain 0,00 96,90

X\N N=2 N=3 N=4 N=5 Election 4
Election 4 0 490,33 490,33 490,33 490,33

1 254,71 208,82 137,98 148,07
2 157,22 108,91 77,58 92,59
3 114,53 152,61 6318,37 7815,74
4 77,03 857,89 6320,13 7820,97
5 454,27 858,40 5779,99 7815,88

MIN= 77,03 MAX= 7820,97
Gain -48,68 98,54

X\N N=2 N=3 N=4 N=5 philo300
Philo 300 0 69,30 69,30 69,30 69,30

1 29,18 26,46 19,75 21,28
2 19,78 15,31 9,95 10,30
3 13,45 10,19 7,45 8,88
4 10,04 8,86 7,17 9,79
5 8,46 9,36 8,03 10,63
6 7,58 10,13 8,84 11,46
7 7,28 10,93 9,64 12,36
8 7,40 11,80 10,50 13,20
9 7,82 12,65 11,36 14,06

10 8,59 13,48 12,18 14,91
11 9,44 14,36 13,05 15,75
12 10,29 15,21 13,91 16,62
13 11,15 16,07 14,77 17,48
14 12,00 16,91 15,62 18,33
15 12,86 17,78 16,48 19,18
16 13,72 18,64 17,34 20,06
17 14,58 19,51 18,20 20,91
18 15,43 20,34 19,05 21,75
19 16,28 21,20 19,90 22,62

MIN= 7,17 MAX= 69,30
Gain -40,05 85,51

ring 100 X\N N=2 N=3 N=4 N=5 ring 100
0 2048,40625 2048,40625 2048,40625 2048,40625
1 874,90 732,63 869,59 460,84
2 875,91 397,43 121,42 254,77
3 188,09 243,49 105,88 549,74
4 121,32 335,10 164,32 1823,00
5 115,21 935,79 167,75 1826,87

MIN= 105,88 MAX= 2048,41
Gain -14,59 94,08

MAPK8 X\N N=2 N=3 N=4 N=5 MAPK 8
0 5,0703125 5,0703125 5,0703125 5,0703125
1 4,81 7,17 7,94 6,39
2 7,66 14,84 9,66 6,41
3 12,72 14,87 9,69 6,44
4 14,34 14,89 9,71 6,48
5 14,38 14,93 9,77 6,50

MIN= 4,81 MAX= 14,93
Gain 0,00 67,80

FMS10 X\N N=2 N=3 N=4 N=5 FMS10
0 7,859375 7,859375 7,859375 7,859375
1 6,43 8,88 8,86 15,33
2 9,14 57,22 10,10 15,39
3 14,07 56,29 10,09 15,42
4 19,07 57,27 10,14 15,42
5 18,79 59,48 10,15 15,46

MIN= 6,43 MAX= 59,48
Gain 0,00 89,19

KANBAN20 X\N N=2 N=3 N=4 N=5 KANBAN
0 0 0 0 0
1 18,00 7,90 66,00 155,00
2 38,00 94,00 64,00 156,00
3 443,00 97,00 65,00 158,00
4 443,00 94,00 66,00 155,00
5 443,00 94,00 66,00 154,00

MIN= 7,90 MAX= 443,00
Gain 95,94

POlyORB2 X\N N=2 N=3 N=4 N=5 PolyORB
0 281 281 281 281
1 162,00 122,00 107,00 101,00
2 107,00 81,00 74,00 110,00
3 79,00 77,00 101,00 231,00
4 72,00 311,00 101,00 231,00
5 89,00 311,00 101,00 233,00

MIN= 72,00 MAX= 311,00
Gain -125,00 47,91
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(e) Kanban (20)
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(f) Neoppod (4)

Mbytes Peterson 4

X\N N=2 N=3 N=4 N=5
Peterson 4 0 483,53 483,53 483,53 483,53

1 236,75 173,59 142,15 118,19
2 142,06 102,54 112,43 164,90
3 98,32 167,00 693,89 3166,23
4 110,68 889,75 694,14 3167,02
5 180,11 890,25 693,77 3166,39

MIN= 98,32 MAX= 3167,02
Gain 0,00 96,90

X\N N=2 N=3 N=4 N=5 Election 4
Election 4 0 490,33 490,33 490,33 490,33

1 254,71 208,82 137,98 148,07
2 157,22 108,91 77,58 92,59
3 114,53 152,61 6318,37 7815,74
4 77,03 857,89 6320,13 7820,97
5 454,27 858,40 5779,99 7815,88

MIN= 77,03 MAX= 7820,97
Gain -48,68 98,54

X\N N=2 N=3 N=4 N=5 philo300
Philo 300 0 69,30 69,30 69,30 69,30

1 29,18 26,46 19,75 21,28
2 19,78 15,31 9,95 10,30
3 13,45 10,19 7,45 8,88
4 10,04 8,86 7,17 9,79
5 8,46 9,36 8,03 10,63
6 7,58 10,13 8,84 11,46
7 7,28 10,93 9,64 12,36
8 7,40 11,80 10,50 13,20
9 7,82 12,65 11,36 14,06

10 8,59 13,48 12,18 14,91
11 9,44 14,36 13,05 15,75
12 10,29 15,21 13,91 16,62
13 11,15 16,07 14,77 17,48
14 12,00 16,91 15,62 18,33
15 12,86 17,78 16,48 19,18
16 13,72 18,64 17,34 20,06
17 14,58 19,51 18,20 20,91
18 15,43 20,34 19,05 21,75
19 16,28 21,20 19,90 22,62

MIN= 7,17 MAX= 69,30
Gain -40,05 85,51

ring 100 X\N N=2 N=3 N=4 N=5 ring 100
0 2048,40625 2048,40625 2048,40625 2048,40625
1 874,90 732,63 869,59 460,84
2 875,91 397,43 121,42 254,77
3 188,09 243,49 105,88 549,74
4 121,32 335,10 164,32 1823,00
5 115,21 935,79 167,75 1826,87

MIN= 105,88 MAX= 2048,41
Gain -14,59 94,08

MAPK8 X\N N=2 N=3 N=4 N=5 MAPK 8
0 5,0703125 5,0703125 5,0703125 5,0703125
1 4,81 7,17 7,94 6,39
2 7,66 14,84 9,66 6,41
3 12,72 14,87 9,69 6,44
4 14,34 14,89 9,71 6,48
5 14,38 14,93 9,77 6,50

MIN= 4,81 MAX= 14,93
Gain 0,00 67,80

FMS10 X\N N=2 N=3 N=4 N=5 FMS10
0 7,859375 7,859375 7,859375 7,859375
1 6,43 8,88 8,86 15,33
2 9,14 57,22 10,10 15,39
3 14,07 56,29 10,09 15,42
4 19,07 57,27 10,14 15,42
5 18,79 59,48 10,15 15,46

MIN= 6,43 MAX= 59,48
Gain 0,00 89,19

KANBAN20 X\N N=2 N=3 N=4 N=5 KANBAN
0 0 0 0 0
1 18,00 7,90 66,00 155,00
2 38,00 94,00 64,00 156,00
3 443,00 97,00 65,00 158,00
4 443,00 94,00 66,00 155,00
5 443,00 94,00 66,00 154,00

MIN= 0,00 MAX= 443,00
Gain #DIV/0! 95,94

POlyORB2 X\N N=2 N=3 N=4 N=5 PolyORB
0 281 281 281 281
1 162,00 122,00 107,00 101,00
2 107,00 81,00 74,00 110,00
3 79,00 77,00 101,00 231,00
4 72,00 311,00 101,00 231,00
5 89,00 311,00 101,00 233,00

MIN= 72,00 MAX= 311,00
Gain -125,00 47,91
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(g) PolyORB (2)
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(h) MAPK (8)

Model Best Solution Computed Solution Worst Solution Loss with respect Gain with respect
N X memory (MB) N X memory (MB) N X memory (MB) to Best Solution to Worst Solution

Philosopher 300 4 4 7.17 2 4 10.04 – 0 69.3 -40% 85%
Peterson 4 2 3 98.31 2 3 98.10 4 5 3167 0% 97%

Token Ring 100 4 3 105.88 2 4 121.30 – 0 2048.5 -14.5% 94%
FMS 10 2 1 6.43 2 1 6.43 3 3 56.3 0% 67.8%

Kanban 20 3 1 7.90 2 1 18.00 2 5 443.00 -56% 98%
Neoppod 4 2 4 77.03 2 3 114.50 4 5 7 821 -48.5% 99%
PolyORB 2 2 4 72.00 2 5 89.00 5 3 311.00 -19% 71%

MAPK 8 2 1 4.81 2 1 4.81 3 5 15 0% 89.1%
(i) Comparison of best and worst solutions to one computed by our heuristic

Fig. 8. Analysis of the impact of the X and N parameters on the N-Cut-Naive Hierarchy heuristic
(vertical scale shows memory usage in Mbyte). Abscissa of figure 8(e) starts with X = 1 because
execution was too fast to capture memory for X = 0.
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the default Unix stack size on our machine) and TOF that we reached a Time OverFlow
(3 days).

There are three sets of data: measures on flat orders, measures on the hierarchization
of the associated flat order and finally, the gain we measure from the flat order to the
hierarchy one.

Results Measures are shown in Table 2 for colored models, in Table 3 for K-bounded
ones, and in Table 4 for case studies models. It is of interest to see that, over the types
of model, our heuristic behaves differently.

We can observe on Table 2 that for colored models, we get good results. Our heuris-
tic save memory up to 80% for the Neoppod and Peterson models. It even allows the
computation of the state space when the flat orders fail for the philosopher and token
ring models. We also observe a good scalability parameter: in all cases, increasing of
the color cardinalities means an increase of the gain we observe.

Number State Flat order Hierarchical order
of Ins- Space Flat performance performance Gain (in %)
tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

Philosopher’s diner

300 1.4×10143 F 7,216 33,449 7.9 39.22 813 9,787 0,5 13,1 89 71 94 67
N 7,769 42,106 8.9 69.30 430 4,350 0.5 13.11 94 90 93 81

500 3.6×10238 F 12,061 55,992 20.5 80.12 1,219 14,802 0,9 18,2 90 74 96 77
N 12,969 70,306 22.2 151.61 390 3,810 1.0 12.29 97 95 95 92

800 4.0×10381 F 19,275 89,722 77.3 260.39 1,492 18,432 1,9 27,6 92 79 98 89
N 20,769 112,606 79.4 260.52 577 5,883 2.6 20.03 97 95 97 92

2000 1.7×10954 F SOF SOF SOF SOF 2,459 30,786 8,9 63,6 ∞ ∞ ∞ ∞

N SOF SOF SOF SOF 724 7,415 25.6 45.42 ∞ ∞ ∞ ∞

4000 3.0×101908 F SOF SOF SOF SOF SOF SOF SOF SOF – – – –
N SOF SOF SOF SOF 1,349 14,287 96,5 125,3 ∞ ∞ ∞ ∞

Peterson algorithm

2 158 F 188 1,085 0.06 4.25 78 415 0.01 3.98 59 62 72 6
N 135 777 0.04 4.10 66 357 0.01 3.93 51 54 62 4

3 20,754 F 3,767 41,395 2.8 24.54 769 10,857 0.4 11.26 80 74 84 54
N 4,441 62,317 3.9 28.19 756 10,837 0.2 9.54 83 83 93 66

4 3.4×106 F 81,095 1.3×106 482.1 897.81 10,719 344,170 37.7 241.5 87 74 92 73
N 72,578 996,414 265.8 483.53 9,291 262,144 13.8 98.31 87 74 95 80

Token Ring protocol

5 53,856 F 246 3,424 0.1 5.08 96 1,889 0.03 3.95 61 45 83 22
N 230 2,882 0.1 4.86 75 1,549 0.02 3.86 67 46 82 21

10 8.3×109 F 997 17,263 0.9 10.19 281 10,198 0.1 6.67 72 41 82 35
N 809 16,708 0.9 9.62 200 9,523 0.1 6.45 75 43 84 33

100 2.6×10105 F 93,534 8.4×106 2,712 2,367 5,954 3.5×106 178.1 636.8 94 59 93 73
N 71099 5.9×106 1671.62 2048 2,613 538,470 23.7 123.4 96 91 99 94

200 8.3×10211 F MOF MOF MOF MOF 14,623 2.4×107 2,114 4,961 ∞ ∞ ∞ ∞

N MOF MOF MOF MOF 5,150 4.1×106 206.2 657 ∞ ∞ ∞ ∞

500 5.0×10531 F MOF MOF MOF MOF MOF MOF MOF MOF - - - -
N MOF MOF MOF MOF 31,473 5.7×107 3,140 8,860 ∞ ∞ ∞ ∞

Table 2. Results of experiment 2 on colored models. Time is expressed in seconds.

As shown in Table 3, results are not that good for K-bounded models: the peak size
remains reasonable, but the memory consumption increases faster with the hierarchical
version than with the flat one. This is due to the cache size that, in our experiments is
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Number State Flat order Hierarchical order
of Ins- Space Flat performance performance Gain (in %)
tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

Flexible Modeling System (FMS)

10 2.5×109 F 338 4,325 0.21 5.14 257 5,075 0.14 5.42 24 -17 33 -6
N 1,256 13,578 0.61 7.85 684 9,144 0.17 6.45 46 33 72 18

20 6.0×1012 F 848 16,480 0.7 8.88 697 23,455 1.1 11.98 18 -42 -41 -35
N 4,391 64,728 2.7 22.43 2,354 47,784 1.4 19.13 46 26 47 15

50 4.2×1017 F 3,578 129,745 5.7 45.75 3,217 238,347 39.1 103.47 10 -84 -575 -126
N 25,196 488,059 27 134.93 13,364 432,297 105 266.55 47 11 -292 -98

Kanban

50 1.0×1016 F 3,216 30,770 0.86 0.0 4,235 144,373 148 423 -31 -369 -17109 −∞

N 53,791 1.0×107 1,170 3,009 8,060 4.3×106 397 955 85 57 34 68

100 1.7×1019 F 11,416 111,570 2.84 30.91 15,960 873,517 26,484 2,246 -39 -682 -9×105 -7166
N MOF MOF MOF MOF MOF MOF MOF MOF - - - -

2,000 2.9×1033 F 4.0×106 3.3×107 48,243 6,971 MOF MOF MOF MOF - - - -
N MOF MOF MOF MOF MOF MOF MOF MOF - - - -

3,000 - F MOF MOF MOF MOF MOF MOF MOF MOF - - - -
N MOF MOF MOF MOF MOF MOF MOF MOF - - - -

Table 3. Results of experiment 2 on K-bounded models. Time is expressed in seconds.

number State Flat order Hierarchical order
of Ins- Space Flat performance performance Gain (in %)
tances Size Final Peak Time MB Final Peak Time MB Final Peak Time Mem

Mitogen Activated Protein Kinase (MAPK)

8 6.1×106 F 452 4,018 0.28 5.1 256 4,819 0.14 5.2 43 -20 51 -3
N 498 5,705 0.28 5.1 336 5,628 0.35 5.4 33 1 -23 -7

20 8.8×1010 F 2,812 29,332 1.9 13.1 1,177 43,856 0.4 20.6 58 -50 78 -57
N 3,082 52,264 2.8 18.5 1,992 69,661 3.6 23.9 35 -33 -27 -30

80 5.6×1018 F 94,582 962,902 112.5 310.0 10,719 344,170 37.7 241.5 89 64 67 22
N 96,462 2.4×106 290 651.4 - - - - - - - -

NEOPPOD Consensus protocol

2 194 F 202 679 0.024 4.1 80 217 0.007 3.42 60 68 71 17
N 463 1,688 0.024 4.5 154 558 0.011 3.57 67 67 55 21

3 90,861 F 5,956 48,269 0.86 19.0 1,126 12,491 0.15 8.2 81 74 82 57
N 3,820 23,974 0.76 12.2 709 4,838 0.10 6.7 81 80 87 45

4 9.7×108 F 84,398 1.0×106 62.6 338.8 11,728 178,921 5.0 70.83 86 82 92 79
N 155,759 1.3×106 186.1 490.3 19,875 217,536 0.007 114.2 87 83 99 77

PolyOrb

2 1.6×106 F 223,243 3.1×106 580.8 1,316 27,548 491,803 29.3 352 88 84 95 73
N 78,785 451,494 98.7 273 10,050 127,791 6.2 81 87 72 94 70

3 2.8×107 F 593,363 1.2×107 4,708 2,851 78,067 2.1×106 188.7 692 87 83 96 76
N 280,068 2.5×106 948.8 1,513 33,526 524,288 64.3 358 88 79 93 76

4 2.1×108 F 1.2×106 3.1×107 8,310 5,765 146,589 4.2×106 528.7 1,780 87 86 94 69
N 666,886 8.4×106 217,173 2,457 84,126 2.1×106 326.0 1,451 87 75 99 41

5 1.4×109 F TOF TOF TOF TOF 143,903 1.1×107 2,361.6 3,045 ∞ ∞ ∞ ∞

N TOF TOF TOF TOF 87,875 4.2×106 1,045.1 2,216 ∞ ∞ ∞ ∞

6 9.2×109 F TOF TOF TOF TOF 288,649 2.2×107 15,757 6,144 ∞ ∞ ∞ ∞

N TOF TOF TOF TOF 140,565 1.5×107 19,474 4,865 ∞ ∞ ∞ ∞

7 - F TOF TOF TOF TOF MOF MOF MOF MOF - - - -
N TOF TOF TOF TOF TOF TOF TOF TOF - - - -

Table 4. Results of experiment 2 on case studies models. Time is expressed in seconds.
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never cleaned. Other experimentations with different cleaning policies did not lead to
better results.

In the FMS model, marking complexity increases slower than in MAPK. However,
we can observe that increasing the initial marking decreases performance.

Table 4 shows that our heuristic scales up quite well for large models but still re-
mains less efficient for purely K-bounded models (MAPK). It is of interest to observe
that, for PolyORB that contains some K-bounded places, performances of our algo-
rithms are still good: the flat orders we used fail for PolyORB 5 while the hierarchical
one fails for 7

The MAPK model also reveals very different behavior of our algorithm when we
elaborate the hierarchy from NOA99 or FORCE flat orders.

Conclusions It is obvious from this experiment that the N-Cut-Naive Hierarchy heuris-
tic is of interest for large P/T net models, like the ones obtained by unfolding of colored
nets (or mostly colored nets). The increase of color classes cardinality generates numer-
ous P/T places, thus increasing the probability to find identical parts that can be shared.
This is why this approach scales up well.

However, our heuristic is less adapted for K-bounded models such as FMS, Kanban
and MAPK. Our diagnostic is threefold:

– First, they are small (22 places or less) and thus, the probability to have identical
part of SDD is practically null.

– Second, since the models do not grow in number of places but only involve more
tokens, the SDD structure remains the same (with no more sharing probability).
The gain from the structure remains fixed while, when initial marking increases, the
complexity due to the generated markings still increases (this effect is contradictory
to the previous one).

– Third, a deep analysis of the SDD structure shows that, if the SDD size grows in
depth (longer sequences and hierarchies) for colored models, complexity increases
in width for K-bounded models. In this configuration, exploration of values during
the union and intersection operations grows quadratically with the width of the
SDD10.

4.5 Experiment 3: Interest for Hierarchical Encoding

The objective is to check if no side-effect comes from the selected flat order heuristics.
To do so, we proceed to an analysis of performances against random flat orders. We
apply these orders on two cases studies models: Neoppod 2 (mostly colored) and MAPK
8 (K-bounded).

Results they are displayed on Figures 9 (for Neoppod 2) and 10 (for MAPK 8). Each
figure contains four charts showing, for each of the 500 executions: i) as ”+” dots, the
value for the selected random flat static order and ii) as ”◦” dots, the value we get when

10 This ruins the saturation [12] mechanism we aim to activate with our encoding.
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(a) Measures for the 500 experiments

Measure Flat Hierarchicalized Success Lowest Highest
Min Avg Max Min Avg Max Rate Gain Gain

Final SDD 1 254 2 211 3 027 348 581 790 100% 72% 75%
Peak SDD 6 790 11 556 18 113 1 552 2 830 4 640 100% 64% 85%
Time (s) 0.17 0.32 0.56 0,03 0.05 0.07 100% 78% 90%

Memory (Mbytes) 6.4 8.28 10.33 3.97 4.54 5.19 100% 36% 54%
(b) Summary of data

Fig. 9. Experiment on random orders and associated hierarchization for Neoppod (2)

the N-Cut-Naive Hierarchy heuristics is processed on this order for N = 2. Four values
are measured:

– The number of SDD nodes,
– The peak of SDD nodes,
– Time computation in seconds,
– The peak of memory consumption in Mbytes.

For each figure, a table summarizes results and shows the success rate of the N-Cut-
Naive Hierarchy heuristic (i.e. the hierarchical order is better than the flat one). The
lowest and highest gains between the flat static order and the hierarchical one are also
shown on this table.

Conclusions Once again, we observe different results for the Colored and K-bounded
models. For Neoppod, there is always a clear separation between the two measures,
showing that, in all cases, our heuristic provides better results (see summary in Ta-
ble 9(b)):

– more than 72% gain for the final number of SDD,
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(a) Measures for the 500 experiments

Measure Flat Hierarchicalized Success Lowest Highest
Min Avg Max Min Avg Max Rate Result result

Final SDD 2 845 71 255 373 639 1 513 36 182 200 176 100% 29% 71%
Peak SDD 84 240 932 657 4 194 300 72 305 795 300 3 292 390 65% -173% 71%
Time (s) 4.40 164.63 980.54 1.42 49.73 233.83 99% -38% 93%

Memory (Mbytes) 34.89 362.69 1598.36 26.12 250.31 1251.59 91% -122% 79%
(b) Summary of data

Fig. 10. Experiment on random orders and associated hierarchization for MAPK (8)

– more than 64% gain for the SDD peak,
– more than 78% gain for CPU,
– more than 36% gain for memory.

These are good results since the proposed flat orders are usually not efficient.
For MAPK, results are not as good as for the other model. The hierarchical static or-

der is not always better than the flat ones. However, except for the peak, hierarchization
often generates a better results (91% hits for memory consumption). This is consistent
with the second experience. However, we note in Table 10(b) that we sometimes get
good results (for example, up to 79% memory gain).

4.6 Discussion

From these experiments we can conclude that our heuristic is good for large P/T nets
and of less interest when the size of the state space depends on the number of tokens
only (e.g. K-bounded models).

The last experiment also showed that our heuristics does not rely on any flat static
order. It can thus be plugged to any existing heuristics providing a flat order.
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However, this heuristics suffers from its blindness: it does not consider the structure
of the P/T net and thus may discard parts of the structure that could have been shared
efficiently.

5 Conclusion

In this paper, we propose a hierarchical way to encode a state space using decision
diagrams (Hierarchical Set Decision Diagrams – SDD [16]) to cope with combinatorial
explosion of state space generation. To the best of our knowledge no work has been
done to automatically define a hierarchical static order with decision diagrams.

We present the N-Cut-Naive heuristics. It starts from an existing flat order and builds
a hierarchical order suitable for large P/T net models.

Benefits of the proposed algorithm are:

– State space generation consumes less memory than the one needed when using flat
orders, thus allowing to process larger specifications.

– the CPU time required to hierarchize a flat order is negligible compared to the state
space generation.

Experiments show excellent gains when the complexity comes from the structure of
the specification (e.g. large models). However, this is not the case for smaller specifica-
tions with a large state space due to numerous tokens hold in places. This is illustrated
with two characteristics of our benchmark models: P/T nets unfolded from Colored nets
(large models) and K-bounded P/T nets (large markings).

Nevertheless, one can think that when modeling complex systems, both types of
complexity are present in the specification: thus, our approach should provide benefits
for model checking of most P/T nets. This is confirmed by our results on some “case
studies” models that do not exclusively belong to one class (i.e. Neoppod and PolyORB
models).

Future Work The problems detected for K-bounded models comes from the presence
of strongly communicating places (this is very true in the MAKP specification). A fu-
ture study would be to mix IDD and SDD (allowing intervals to label some arcs of
hierarchical diagram). However, such a study needs a more detailed static analysis of
the structure of the model. In that domain, more flexible classes of decision diagrams
such as the poly-DD [24] might offer better solutions.

Another extension of this work concerns the elaboration of an algorithm that di-
rectly computes a hierarchical order. Once again, the use of structural analysis such
as P-invariants, deadlocks, or traps in the model is needed to provide the computation
modules leading to a better sharing in the state space and thus, to a better compression
ratio.

Thanks The authors thank the anonymous reviewers for their useful comments on the
paper.
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