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Abstract—Two well-accepted techniques to tackle combinato- Junttila [5] proposes a general definition of this approach

rial explosion in model-checking are exploitation of symmetries  for systems whose states are integer vectors and symmetry
and the use of reduced decision diagrams. Some work showed groups are arbitrary permutation groups. Using the Schreie

that these two techniques can be stacked in specific cases. Si tati 61 of tati h
This paper presents a novel and more general approach SIMS representation [6] of permutation groups, he proposes

to combine these two techniques. Expected benefits of this an algorithm effective in practice to compute a represestat
combination are: of an equivalence class.
o in symmetry-based reduction, the main source of com- However, the proposed algorithm only deals with explicit
Elexnyfresm%sfln the ﬁanomzanon compdutauon ”;]at mUStf encoding of the state space. Thus, the problem remains hard
€ pertormed 1or each new encountered state; the use o . . . . L.
shared decision diagrams allows one to canonize sets of sm.ce the algonthm mus.t be applied .on each individual sta.te
states at once. This prevents a direct implementation on top of symbolic

« in decision diagram based techniques, dependencies be- data structures such as decision diagrams (DD).

tween variables induce explosion in representation size; .. .
the manipulation of canonical states allows to partly —D€cision DiagramsReduced Ordered BDD (ROBDD) were

overcome this limitation. introduced by [7] to compactly represent boolean functions
We show that this combination is experimentally effective in ~ over boolean domains such as large circuits. Since their
many typical cases. first use for model-checking [3], many variants of decision
Keywords-Symmetries, Decision Diagrams, State Space Anal- diagrams have been proposed. They all allow to manipulate
ysis large sets of states symbolically. The DD size can be
exponentially smaller than the size of the represented set.
. INTRODUCTION Thanks to dynamic programming, algorithms manipulating

Formal verification of concurrent systems, while promis-DD are usually polynomial in the representation size.
ing push-the-button technology to check the correctness Unfortunately, algorithms that manipulate classical ex-
of systems, rapidly encounters the state space explosigslicit data structures must be redesigned to take advamtage
problem. DD. This is not always possible, particularly if the algbrit
Among many techniques proposed to fight this problemjnvolves separate treatments for every state.

abeic pmcache bazed n syt ) 2 37 i oy nd s D,

_ _ ' initial attempts to combine a symbolic representation of
Symmetries.|f we are given a symmetry group Over states  gets of states with a computation of a quotient graph met
and the transition relation, we can build a quotient graph Ohitigated success. The problem, identified in [8], is that th
equivalence classes (also called orbits) of states, thgt Mgt relation —allowing to map states to their represeveat

be exponentially smaller than the full state graph [4]. Thispag exponential size when represented as a BDD, whichever
quotient graph preserves many properties of interest ssich @,e yariable order chosen.

reachability and linear temporal logic provided the proyper
is itself symmetric with respect tG.
To build such a graph, the approach most commonly use

[1], [5] consists in using a canonical representative otheac ymmetry group.
orbit. However, an orbit may be of exponential size with . A slightly different approach to build a quotient graph [2],

is to use an abstract representation of orbits. This alswvall

th tati f ical tati f kit h to exploit symmetries of the transition relation, howeves t
€ computation of a canonical representative of an or aapproach can only deal with specific groups of symmetries,
exponential worst case complexity in time and/or memor

. i . and cannot easily be generalized to arbitrary permutation
(if the orbit is actually built). y g yp

groups.
This work was supported by theélzgation Grérale pour I'’Armement. In practice, this approach can often be successfully com-

Variations such as using several representatives of an
rbit, can be more effective but do not fully exploit the



bined with symbolic representation of sets of states, as « the composition of two symmetries and the inverse of
shown in [9] for symmetries limited to the full permutation a symmetry are still symmetries.
group, or for the specific framework of Symmetric Nets Definition 3. Equivalence relation=g

(a.k.a. Well-Formed Petri nets) in [10] [11]. However, this Two states §s, € S are said to be symmetric, denoted

ggg;gﬁg is limited to specific symmetry groups and IacksSl —o 5, if there is a ge G such that g1 = S5, =g is

o ) ) an equivalence relation over &|g denotes the equivalence
Contribution. We propose an algorithm allowing to work c|ass (also called orbit) of x undezg.

with arbitrary symmetry groups, that can be effectively ] . N
implemented on top of symbolic data structures. Given a We may now define the abstraction of a transition system

total ordering on states, the smallest state in an orbit i$'SINY=c-

considered as its canonical representative. Definition 4. Reduced transition system

Instead of directly representing the orbit relation, we & — (8A,%) is a reduction ofx w.rt. G if and only if:
introduce a "monotonic” function that, given a stase . 8CS,¥seS35eS:is=c5
returns a statg in the same orbit such that< s, if such an . &cC & andvg e G.g.% C So,,

elements’ exists. By repeatedly applying such a monotonic « AC8x 8
function in a fixpoint, we achieve the same effect as if = ’
we were using the orbit relation, without ever having to
explicitly compute and represent it.

Because this function operates over sets of states, it@avoid
individual representative computations for each statas th .
leading to a general and efficient algorithm to combine the A reduction,x of X w.rt. G preserves the reachability
use of symmetries with symbolic data structures. property and, under appropriate conditions, linear temipor

Outline. Section Il defines the required notions on symme-me:\IUIae LlZ],rE4].dH?np§, thﬁ verification can bf done on
tries and decisions diagrams. Then, section lll details howk - Note that this definition allows to use several represen-

symmetries can be represented on top of decision dir:lgramrsat'_ves per orbit, generahzmg the notion .Of quo_hent grap
An example and some benchmarks are also provided hef@h's approach using several representatives yields arlarge
before a conclusion in section IV reduced structure but may be faster to build [5].

' An abstract algorithm to compute& is presented on

Il. PRELIMINARIES figure 1. Letrepr be a function that maps an elemerd S

This section defines the notions of quotient graph and th@MtO its representativec’[s|g. Let succ be the function that
type of decision diagrams we use in section III. maps any state to its successorstucc(s) = {S|s— s'}.

. if § €S and(8,s) €A, then there exist§; € S such
that$ =c 5 and (5,%) € 4,

o if (5,%) € A then there exists;s S such thats=¢ $;
and (§,%) € A.

A. Quotient graph, definitions §:: repr()
We recall here the theory of symmetry reduction for state A:=0

space analysis. These definitions are adapted from [5]. repeat
for se Sdo
Deﬁnition 1. Tl’ansition SyStem é’ = repr(succ(s))
A transition system is a tupleS A, S) such that: A:=AU{(s8)§ 8}
. Sis a finite set of states, S:=8u8
« AN C Sx S is the transition relation, end for
¢ S C S is the set of initial states. until a fixpoint is reached
Transitions for(s;,sp) € A are noteds; — s,. Symmetries Figure 1. The algorithm to generafe
of transition systems are defined using a bisimilarity retat
between states. The size ofS depends on the functiomepr, as S=

repr(S), with two extreme cases:
« if repr is the identity, therS=Sand k¥ = «.
« if repr maps all elements of an orbit onto the same
unique element, theS is in bijection withSg, and the
« g is congruent with respect to the transition relation: size qu IS mlnlmaI: o
V81,9 €SS — S < 0S - 0.5 Cqmputllng such a unique representative is hqwever expo-
nential in time for the worst case: the canonization problem
G, the set of all symmetries of, is a group because: s equivalent to graph isomorphism. This class of compjexit
« the composition is associative, is not known to have a polynomial solution [8], [5].

Definition 2. Symmetry
Let x = (S A, S) be a transition system. A symmetry 2of
is a permutation g over S such that:

* 3S9=%



ments. In this work, we use DDD to represent state®'m
thus each assignment sequence represents a system state.

Operations and Homomorphisms.DDD support standard
set operationsu, N, \. The semantics of these operations
are based on the sets of assignment sequences that the DDD
represent.

DDD also offer a concatenatiod; - 5, which replaces
terminall of &; by &,. This corresponds to a cartesian prod-
uct. Basic and inductive homomorphisms are also introduced
to define application specific operations. A more detailed
Figure 2. This DDD represents the set of sequences of assigame description of DDD homomorphisms can be found in [14].
{i=2y:=3zi= 1), (= Ly = Lzi= 1), (xi= Ly i= 2i2:=3)) . A basic homomorphism is a mapping: D — D sat-
isfying ®(0) =0 and V3,8’ € D, ®(dUJ) = D(d) U D(F).
Many basic homomorphisms are hard-coded. The sum

- ] operation between two homomorphismgd (€ D, (P71 +
Shared Decision Diagrams (DD) are a data structur%z)@ = ®1(8) UD,(8)) and the composition of two ho-

to compactly represent sets. There are many variants Qﬁomorphisms,o (P10 Dy(3) = P1(P,(8))) are themselves
decision diagrams used for model-checking, but they afl rel homoemorphisms.
on the same underlying principles: nodes of the decisi@n tre A homomorphismc is a selector iff V& € D,c(3) C 3.
are unique in memory thanks to a canonical representatiorshis allows to represent Boolean conditions, @selects
the number of paths through the diagram (states) can bgates satisfying a given condition; thus the negatiore of
exponential in the representation size (nodes in the DD)g ¢(d) = 8\ ¢(d). As a shorthand for "if-then-else”, we use
equality of two sets can be tested in constant time, usianThenElse(c, hi,hy) =hioc+hyoc, whereh; andhy are
caches most operations manipulating a DD are polynomighomomorphisms.
in the representation size, the effectiveness of the engodi  Tpe fixpoint h* of a homomorphism, defined &s(5) =
strongly depends on the chosen variable ordering [13]. hk(8) where k is the smallest integer such thhf(3) =

In this paper we rely on Data Decision Diagrams (DDD, hk+1(3)  is also a homomorphism provided a finkeexists.
defined in [14]), which extend classical BDD in two re- Besides providing a high level way of specifying a
spects1) variables are considered to have an integer domaigystem’s transition relation, homomorphisms can be used
instead of a Boolean one, and) operations over DDD  to express many model checking algorithms directly. For
are encoded using homomorphisms instead of the usughstance, given a DDDsy representing initial states and
fashion where another decision diagram with two variableg homomorphisnsucc representing the transition relation,

B. Decision diagrams

per variable of the state signature is used. we can obtain reachable states by the equaRemch=
A DDD is a data structure for representing a set of succ Id)*(s).
sequences of assignments of the foun = vijup = Specifying model checking problems as homomorphisms

. . . Vi \ Vin . . -,
V2;...;Un 1= Vp, also notedw — o — -+~ — 1, where  allows the software library to enable automatic rewritings

w are variables and; are integer values. We assume that yield much better performances, such as the saturation
no implicit variable ordering and the same variable canalgorithm [15].

occur several times in an assignment sequence (though with
some constraints, see [14]). We define the termihab
represent the empty assignment sequence, that terminatesin this section we will develop our ideas about how to
any valid sequence. The termiratepresents the empty set combine Symmetries and Symbolic Structures in a general
of assignment sequences. framework.

Definition 5 (DDD). Let Var be a set of variables, and for A. Assumptions
any w in Var, let Dom(w) C IN be the domain ofo. The set
D of DDD is defined inductively by:
0 €D if eitherd € {0,1} or 6 = (w,arc) with w e Var, and
arc: Dom(w) — D is a mapping where only a finite subset
of Dom(w) maps to other DDD tha.

By convention, edges that map to the DmDare not
represented.

Ill. SYMMETRIES AND SYMBOLIC STRUCTURES

StatesWe make the assumption that the system’s states S
are vectors of integers, of fixed sire SC IN".

Symmetries We consider symmetries that permute
the indexes: Vg € G,W = (vi,V2,...,Vn) € SQV =
(Vg1,Vg2,-.-,Vgn). The group of all permutations over a
set of sizen is denoted bysy,.
We then manipulate symmetry groups as sets of permu-
For instance, consider the DDD shown in figure 2. Eachtations. Conversely, given a set of permutati¢hslet (H)
path in the DDD thus corresponds to a sequence of assigmenote the group generated by



States are totally ordered. We use lexicographic orderingMonotonic. Property. To obtain minimality, we would like
noted <. The canonical representative$ of an orbit[sjc  to chooseH such thatset_canonize(H,S) = {min[s|g|s€
is defined as its smallest element (with respectjoThus, S}.

Vse S, §=min[slc. In essence this means we require that any stdtet is
not the minimum of its orbifs|g can be reduced (according
B. Symbolic Symmetry algorithm to <) by applying a permutation dfl.
Given these premises, we use the algorithm of figure 3 td€finition 6 (monotonic). Let G be a subgroup afn.
canonize a set of states. H C G is monotoni¢c w.r.t. G if and only if:

] e Vs€S (dge G,gs<s = JdheH,hs<s).
set_canonize(H C §5, SCIN"): )
( " ) In algorithm 3, when states can no longer be reduced

refc);atg cH do by any permutation qH, by definition qf themonotoniQ'
S:={sscSgs<s} property, the states % are t'he canonlgal representatives
S:=Sugs of the input states. Whehl is monotonic w.r.t. G, the
S:=S\S falgorithm returns the set of canonical representativefi®f t
end for input states.
until Sno longer evolves If H is notmonotonic w.r.t. G, the algorithm behaves like
return S the one of figure 1 when several representatives are used.
Figure 3. Symbolic algorithm to canonize a set of states. C. Symbolic encoding

States being elements 8" are naturally represented as

This algorithm iterates over the permutationstdf ap- a3 DDD of n variables. Note that by assumption, the system
plying each one only to the states that it reduces. If thesize is fixed in number of variables. For systems requiring to
permutations irH are permutations of the symmetry group dynamically allocate variables, a pool size bound must then
G of the system, we are ensured that at each step of thge known a priori. However we are allowed to use integers
algorithm, each state is either left as is, or mapped t0 &jith a priori unknown bounds as variables. This feature
strictly smaller state belonging to its orbit. Since eachitor of DDD is exploited here, but the algorithm could work
has a minimum (its canonical representative) this algorith \with boolean variables and any type of Decision Diagrams.
is guaranteed to converge. Labels of states, if we consider a Kripke structure instead

Admittedly, the algorithm might visit each state of an of a transition system, can be encoded as additional state
orbit (in decreasing order, one by one), yielding worst case&ariables.
exponential complexity. Since the problem is equivalent To encode algorithm of figure 3 using homomorphisms,
to graph isomorphism, this is not surprising. In practicewe define for any permutatiog € s, :
however, with an appropriate choice of a small set of , requces(g), a selector homomorphism to retain states
permutations irH, this algorithm can be quite effective. that are reduced by, i.e. reduces(g)(S) = {s|s €

Let us note that the order in which the permutations of  g5gs<s},

H are considered in the "for” |00p (OI’ eqUiValentIy, in the . apply(g), a homomorphism to appgto each state of
_compositioaneH) does not impact correctness, but may a set, i.eapply(g)(S) = {g.gsc S}
impede performance. The full algorithm is then expressed by the equation:

Actually, the choice oH is critical to overall performance
of this algorithm. IfH = G, then this algorithm converges set_canonize(H) =
after a single iteration of the_ outer loop (”rep.eat"). In @th (Ogen IfThenElse(reduces(g),apply(g),ld))*
words, for each staté¢] contains the permutation that maps
it to its representative. However, this means that, on the Since convergence is ensured by the fact each orbit has a
worst case, the size of is exponentia| inn. This is minimum,the ﬁXpOinf is well-defined. The homomorphism
congruent with the observations of [8] in which the orbit set_canonize(H) can be applied to any set of states, yield-
relation is shown to be exponential in representation size. ing their canonical representatives whinis monotonic .

A contrario, whenH is small, many iterations may be Apply and Reduces.The homomorphisnreduces, given
necessary for the algorithm to converge, but each element dfhat we are using lexicographic order, and that states are in
H is likely to reduce larger subse®& Since the complexity IN", is expressed as a composition of variable comparisons.
of applying a permutation to a set of states is related to thé&or instance, consider the permutatige- (2,3,1,4) of $a4.
representation size (in DDD nodes) and not to the number ofVe haveg ! = (3,1,2,4). Henceg reduces= (s1,%,S3,%)
states in the set, manipulating larger sets lowers the bveraiff
complexity. Sg11<S1V(Sy11=S1N(S§g12 <RV (Sg12=2A(...))))



This general formula is instantiated for this specgimn representative, but it is smaller thd8,3,1). At this step,
the following way: the two states are merged, allowing to share any subsequent
<V (B=SIAN 1<V (SI =A% < K))) canonization step. In general, each step —with complexity
Let us note that since position 4 is invariant gythere  polynomial in the DD size— might merge exponentially many
are only three nested variable comparisons. Subsequestates. This contrasts with explicit approaches that dason
conditions are trivially simplified away. This condition is all these states individually.
expressed using a selector homomorphism allowing com- )
parison (by< and —) of the value of two variables of a D- Finding a monotonic
state. The full condition homomorphism is expressed using As previously explained, whatever the choicetfC G
compositione for A and the sum+ for V. the algorithm of Fig. 3 is still valid. On the other hand, the
The homomorphismapply is built as a composition of choice ofH is critical to its efficiency. IdeallyH should
transpositions of adjacent elements notgdi. The original ~ be monotonic. w.r.t. G to obtain maximal reduction, and
DDD definition [14] includes a general homomorphism to heuristically for decision diagram based implementations
swap arbitrary variables of a DDD. Transposition of adjacenH should be as small as possible.
variables is a particular case of this. In the general case, the computation of a 3$ét
We compute a path with the minimal number of thesemonotonic. w.r.t. G that is of minimal size, is ino(n")
transpositions necessary to achieve the desired effect adth a brute force algorithm.

compose them to builchpply. For instance, withg = Efficient data structures to store groups of permutations
(2,3,1,4) of Sa, such as the Schreier-Sims representation [6] could provide
g=Tp30T12 a candidate to definel. However, the generating set they

provide is notmonotonic in general. Even when it is, its

Let us note that the DDD homomorphism framework gi;e can be much larger than necessary. For instance, the
allows to easily define these complex operations, hence thg.neier-Sims representation of the full group of permuta-

implementation using ibDDD [16] is straightforward. As @ tjons 5. is quadratic inn, whereas anonotonic: set of size
beneficial side effect, since a given transpositiaran occur | ayists.

in several permutations, various permutations may benefit \y provide in this section an appropriate dét for
from the caqhe for transpositions. _ .. common symmetry groups.

Our algorithm can be implemented using other decision N . N .
diagrams libraries, although swap and comparison of variProposition 1. The set of adjacent transpositions is
ables may not be offered natively. monotonic for $py.

Note that the same algorithmic bricks can be used to

) ' ¢ Proof: Let s= (s1,...,51) € IN" be a state, such that
compute the orbit of states, using the equation:

g € sn,0.8 < s. This means thats is not sorted, and

orbit(H) = (Oger (apply(g) + 1d))* therefore, there exists an indéxsuch thats > s1. Thus
, , S =Tjj+1.5= (S1,---,S+1,S,---,5) <S. u

If (H) =G, applyingorbit(H) to a set of stateS returns N )
the setlJs-g[sc. Proposition 2. Let r be the rotation2,3,...,n,1), and G=
> (ry = {id,r,r2...r""1}. Then G is the only monotonicset

lllustrative example. Let us detail the run of the al-

. . - . w.rt. G.
gorithm on a small illustrative example. Figure 4 shows

the intermediate DDD produced by the application of Proof: For 0<i <n, lets=(1,2,...i—1,0,i+1,...n).
set_canonize(H) to a system of three variables. With Then the only rotation irG that reduces is r'. [ |
G = s3 as symmetry group, we choos¢ = {112,723}, These two groups are the most frequently encountered

which ismonotonic w.r.t. G, as will be proved in llI-D. We  groups of symmetries in the literature, as they occur natu-
focus on the inner loop in algorithm 3. Each step correspondgally in many symmetric systems. This givesmsnotonic

to the application of an elemegtof H to the states reduced sets of sizen for these two groups. The two properties above
by g in the current DD. At the end of the algorithm, another are still true when considering groups that act on a subset
iteration is necessary to check for convergence. of the system variables.

As we can see through this toy example, each step of the When the symmetries of the system arise from sev-
algorithm simultaneously reduces several states. In desingeral symmetry groups (i.e. symmetries of subsystems), we
step, each permutation reduces all the states it can, evendhoose to use the union of their respectiwenotonic sets.
they belong to different orbits. Let G= (EUF), andHg, He be monotonic sets w.r.t.

States that belong to the same orbit are progressiveliz andF respectivelyHg = He UHE is monotonic w.r.t. G
collapsed onto their representative. Because of sharing of E andF act on disjoint sets of variables. Otherwise, we
sub-structures, notice that sta{@s1,3) and(2,3,1) in 4(a)  are not ensured thdig is monotonic w.r.t. G, but it can
are collapsed ont(®?,1,3) in 4(b). (2,1, 3) is not a canonical still be used as a good candidate set for the algorithm.
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(a) contains the orbit of (b) aftertzz in inner loop (c) aftertyo (d) after
(1,2,3) and the stat€3,3,1). 23

Figure 4. UsingG = 53, we obtainH = {112,T23}. set_canonize(H) applied to (a) successively gives (b), (c), (d). (d) is the afecanonical
representative$(1,2,3),(1,3,3)}.

# generated states time (s) Memory (MB)
Model Scale LoLa DD DD-Sym LoLa DD DD-Sym LoLa DD DD-Sym
Soft. Product Line 80 486 3.8685 107 486 540 135 193 364 273 558
Soft. Product Line 100 606 4.0564-10°* 606 1,488 238 399 558 411 964
Soft. Product Line 120 726 4.2535.10%7 726 3,284 389 776 795 589 1,305
Soft. Product Line 140 — 4.4601-10% 846 — 581 1,417 — 800 1,311
Soft. Product Line 160 — 4.6768 10%° 966 — 844 2,472 — | 1,014 1,314
Soft. Product Line 180 — 4.9040-10°° — — | 1,167 — — | 1,256 —
Soft. Product Line 200 — 5.1422.10° — — 1,587 — — 1,560 —
clients servers 5 22,840 805,284 192 1 4 1.4 14 122 58
clients servers 6 425,646 11,368,449 448 27 18 3.8 234 383 140
clients servers 7 3,630,511 157,169,826 1,024 452 67 8.8 1,971 | 1,232 267
clients servers 8 — 2,130,740,721 2,295 — 306 19 — | 3,200 521
clients servers 12 — — 42,926 — — 350 — — 4,004
SaleStore 5 4,456 71,238 106 0.1 0.93 0.32 3.9 36 17
SaleStore 10 1,410,608 184,554,369 496 111 37 3.2 689 708 99
SaleStore 15 — 207,629,747,172 1,186 — 692 12.5 — 4,190 303
SaleStore 20 — — 2,176 — — 30 — — 722
SaleStore 30 — — 5,056 — — 154 — — 2,455
SaleStore 40 — — 9,136 — — 495 — — 4,194

Table |

PERFORMANCES OF STATE SPACE GENERATION USINGOLA, PLAIN DD AND THE COMBINATION OF DD WITH SYMMETRIES.

Other types of symmetries on data values,explicit data structures, thus its memory consumption grow
such as v = (obj;,0bjp...ref;,ref;), and gv = linearly with the number of representative states. LoLa is a
(objg1,0bjg2...gref;,gref) can be integrated into well maintained and mature software.
our algorithm seamlessly. This symmetry is of interest as On the other hand, we compare our algorithm to li-
it corresponds to the case wheobj; and obj, contain  bITS [16], [18], a model checker implemented using DDD,
similar objects ande f;,re f, are references to these objects, but no symmetries. Up to the addition of symmetries, it
that need to be reindexed if we exchange the positions ofises the same encoding (states, transition relation) as our
the two objects. This case is encountered when canonizingrototype DD-Sym.
the memory (heap in particular) of a concurrent system.  Taple | compares the size of the produced state space
E. Assessment (time and memory consumption during its elaboration), for
In thi . . these three tools. Experiments were run on a Xeon 64 bits
n this section, we assess our algorithm on some examples

. . . _,at 2.6 GHz processor with a time limitation of 1 hour and
We compare our approach to an implementation of Junttila’s

) . : memory limit of 5Gbytes. The following models (shown in
algorithm for symmetry reduction and to symbolic model )
. . ) annex) were processed:
checking without the use of symmetries.
The tool LoLa [17] uses a Schreier-Sims representatiorSoftware Product Line [19]. It is a model extracted and
of the symmetry group and produces a reduced system witthen adapted from a case study concerning a software
potentially several representatives per orbit. It workshwi configuration process. Features and configuration optiens a
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fully symmetric domains, that do not interact directly. Ehu mechanism, has a much bigger memory peak.

the union of their respectiveonotonic. sets ismonotonic.  Clients servers [10].1t models a simple remote procedure
W.r.t. the symmetry group of the model. LoLa and DD-Sym¢all protocol betweem clients andn servers sharing a
both compute the quotient graph, with one representativéommon communication channel. Clients (resp. servers) are
per orbit. The symmetry group exhibited by this model isconsidered indistinguishable up to their identity. Thug, w
particularly simple; this means the canonization procedur have a full symmetry group on clients and a full symmetry
has a relatively low complexity. The classical DD imple- 9"0Up on servers. We use the union of their respective
mentation has the best performance on this example, arfdonotonic: sets, which is not itselfonotonic. w.r.t. the
LoLa the worst. However, DD-Sym’s memory consumption Symmetries of the whole system. However, on this model,
does not grow beyond 1.3Gbyte, at the point where thdD-Sym scale.s better than the_ other tools. AIt_hough the re-
DD garbage collector activates. This means that DD-Symduction factor is good, the multiple representatives apgino

on this model, does not compute intermediate structured) LoLa still retains too many states to cope with larger scal
whose size exceeds 1.3Gbyte, and could actually run withiparameters. DDDs are able to handle up to 2 billion states,
a memory confined to 1.3Gbyte. This limit is paid in time, Put fail earlier than our prototype.

as the garbage collection frees the DD caches. In deedaleStore [11].1t models a shopping mall where clients
DD-Sym fails earlier than the classical DD implementation,can shop for gifts. Clients and gifts form two fully sym-
due to time confinement. On the other hand, the classicahetric domains, that interact when a client buys some gifts.
DD implementation, that uses the same garbage collectioBimilarly to the clients servers model, we use the union of



the monotonic sets. Again, the number of states in LoLa’s can stack.

representation grows very fast; it fails before the purely These results, while preliminary, are encouraging. It al-
symbolic approach. DD-Sym allows the symbolic approachows our DD checker to scale better for some symmetric
to scale up to much larger model parameters, as the numbaerodels. It also favorably compares to explicit symmetry-
of representatives grows very slowly. based methods.

Discussion on the Results of Table | and figures 5 to 8.  PD-Sym will be integrated into the ITS framework, and

The three tools do not compute the same representatio??(tended to use Hierarchical Set Decision Diagrams [18].

of the state space, hence they don't always find the same IV. CONCLUSION
numpe_:r of states. The classical DD ool comput_es the _fuII We have presented a novel approach to combine symme-
transition system without any symmetry reduction, Whlled;l

both Lol 4 DD-S ; tient struct ries with symbolic data structures. It relies on the chaite
0 ola an "oym compute a quotient structure and, appropriate subset of symmetries, that allows to compute
the number of states shown is actually the number of orblgi

. q reduced state space without needing to represent the orbit
representatives computed. ) ) . relation. Our algorithm supports arbitrary symmetry greaup
Both DD-Sym and Lola use an algorithm which might

) ) ] Even if amonotonic set cannot be computed easily, we
lead to several representatives of an orbit being repredent provide an approximation that works well in practice for

LoLa’s strategy to compute several representatives fon €acq,mmonly encountered symmetries. We ensure correctness
orbit reduces the cost of canom;anon, and IS supposgd t(? R&en if the provided set of symmetries does not respect the
a good trade-off between the time-consuming canonizatio,ontonic. property: this simply yields a larger state space.
and the size of the quotient graph. Our own algorithm may  athough our experiments are so far limited, we show that

produce several representatives if the provideds@ not  yis anproach can improve a method that only uses decision
monotonic w.r.t. G. diagrams.

In order to control when the tested tools achieve full \\e gre currently investigating the definition of
reduction, we have processed small instances of the mOdellﬁonotoniQ sets for other symmetries, such as those
with another tool that is guaranteed to perform full redutti  oncountered when considering memory addresses and
In practice, both LoLa and DD-Sym compute a Singlepointers.
representative per orbit for the Software Product Line hode  another perspective in the context of local symmetries

achieving full reduction. For the two other models, the setg0] [21] involves adaptation of the set used for canonizati
H we use to canonize are notonotonic . In spite of this,  guring the state space construction.

DD-Sym only computes a single representative per orbit
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