From the Prototype to the Final Embedded System
Using the Ocarina AADL Tool Suite

JEROME HUGUES GET-Télécom Paris — LTCI-UMR 5141 CNRS

and

BECHIR ZALILA GET-Télécom Paris — LTCI-UMR 5141 CNRS

and

LAURENT PAUTET GET-Télécom Paris — LTCI-UMR 5141 CNRS

and

FABRICE KORDON Université Pierre & Marie Curie, Laboratoire d'Informatique de
Paris 6/MoVe

Building distributed deal-time embedded systems requires a stringent methodology, from early
requirement capture to full implementation. However, there is a strong link between the require-
ments and the final implementation (e.g. scheduling, resource dimensioning). Therefore, a rapid
prototyping process based on automation of tedious and error-prone tasks (analysis, code gener-
ation) is required to speed up the development cycle. In this article, we show how the AADL
(Architecture Analysis and Design Language), appeared late 2004, helps solve these issues thanks
to a dedicated tool-suite. We then detail the prototyping process and its current implementation:
Ocarina.

Categories and Subject Descriptors: D.2.2 [Design Tools and Techniques]: Evolutionary pro-
totyping, Modules and interfaces; D.2.11 [Software Architectures]: Languages, Patterns; 1.2.2
[Automatic Programming]: Program synthesis

General Terms: Design, Languages, Performance, Reliability, Verification
Additional Key Words and Phrases: AADL, Distributed, DRE, Embedded, Ocarina, PolyORB-
HI, Real-Time

1. INTRODUCTION

Building Distributed Real-Time Embedded (DRE) systems involves many tightly
coupled steps, from requirements capture (number of tasks and their interactions,
non-functional attributes) to validation (feasibility of scheduling) down to imple-
mentation and testing.

However, the distance between requirements and implementation usually slows
down this process: one has to carefully respect non-functional attributes when
implementing tasks; any change in the specification has to be carefully propagated

This work has been funded in part by the IST Program of the European Commission under project
IST-004033 (ASSERT).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2008 ACM 1529-3785/2008/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008, Pages 1-24.

2 : J. Hugues et al.

at the implementation level; interactions between entities have to be mapped onto
run-time entities in a safe manner (deadlock-free, no starvation, no overrun, etc...).

Hence, developers and system architects need common interchange models to
dialog and exchange their requirements and concerns. The AADL (Architecture
Analysis and Design Language) [SAE 2004] recently appeared as an architecture
description language suitable to describe systems, from high-level concerns down
to implementation.

“Evolutionary” prototyping is now becoming a well accepted development ap-
proach. It is based on a central model that is refined as long as it is not satisfactory.
Programs can be generated from this model and constitute a version of the pro-
duct. The last refined model corresponds to the final system. Also called “Model
Driven Engineering” (MDE), it is promoted by OMG. The goal of this paper is to
propose a prototyping methodology based on AADL and dedicated to DRE sys-
tems. AADL is interesting compared to other modeling formalisms as it is backed
by several industrials from the space and avionics domain. Tools already exist to
build and exploit AADL models, from early validation to full implementation.

In the following, we give a brief overview of the AADL, we then discuss how the
AADL can serve as a vehicle for a rapid prototyping methodology for DRE systems.
We show the resulting prototype is very close from the final product. Finally, we
present our current work on the Ocarina AADL tool suite and assess its use to
build High-Integrity DRE Systems.

2. AN OVERVIEW OF THE AADL

AADL (Architecture Analysis and Design Language) [SAE 2004] aims at describing
DRE systems by assembling blocks separately developed.

The AADL allows for the description of both software and hardware parts of
a system. It focuses on the definition of clear block interfaces, and separates the
implementations from these interfaces. It can be expressed using both a graphical
or a textual syntax.

An AADL model can incorporate non-architectural elements: embedded or real-
time characteristics of the components (execution time, memory footprint, etc...),
behavioral descriptions, etc... Hence it is possible to use AADL as a backbone to
describe all the aspects of a system.

An AADL description is made of components. The AADL standard defines soft-
ware components (data, thread, thread group, subprogram, process) and exe-
cution platform components (memory, bus, processor, device) and hybrid com-
ponents (system).

Components describe well identified elements of the actual architecture. Subpro-
grams model procedures like in C or Ada. Threads model the active part of an
application (such as POSIX threads). AADL threads may have multiple opera-
tional modes. Each mode may describe a different behaviour and property values
for the thread. Processes are memory spaces that contain the threads. Thread
groups are used to create a hierarchy among threads.

Processors model micro-processors and a minimal operating system (mainly a
scheduler). Memories model hard disks, RAMs, buses model all kinds of networks,
wires, devices model sensors, etc. ..

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 3

Unlike other components, Systems do not represent anything concrete; they ac-
tually create building blocks to help structure the description.

Component declarations have to be instantiated into subcomponents of other
components in order to model an architecture. At the top-level, a system contains
all the component instances. Most components can have subcomponents, so that
an AADL description is hierarchical. A complete AADL description must provide
a top-most level system that will contain the other components, thus providing the
root of the architecture tree. The architecture in itself is the instantiation of this
system.

The interface of a component is called component type. It provides features (e.g.
communication ports). Components communicate one with another by connecting
their features. To a given component type correspond zero or several implemen-
tations. Each of them describe the internals of the components: subcomponents,
connections between those subcomponents, etc... An implementation of a thread or
a subprogram can specify call sequences to other subprograms, thus describing the
execution flows in the architecture. Since there can be different implementations of
a given component type, it is possible to select the actual components to put into
the architecture, without having to change the other components, thus providing a
convenient approach to configure applications.

The AADL defines the notion of properties that can be attached to most elements
(components, connections, features, etc...). Properties are attributes that specify
constraints or characteristics that apply to the elements of the architecture: clock
frequency of a processor, execution time of a thread, bandwidth of a bus, etc... Some
standard properties are defined; but it is possible to define one’s own properties. A
more detailed introduction to the AADL can be found in [Feiler et al. 2006].

@Study_System

Case_Study_Process

Themj

Fig. 1. A simple AADLmodel

Figure 1 presents a simple AADL model that depicts two threads: one periodic

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

4 : J. Hugues et al.

(GNC, “guidance navigation control”); one sporadic (TMTC, “telemetry/telecom-
mand”) that interact to read and update a shared variable (POS, “position”). This
models a satellite guidance system.

Let us note the model depicted in figure 1 is only the high-level view of the
system, additional elements have to be added to detail the signature of methods
that apply on POS, the deployment of each element onto a physical architecture,
worst case execution time (WCET) of each element, etc...

Projects such as OSATE [SAE 2006] define modeling environments to build
AADL models, using the Eclipse platform.

We have developed the Ocarina standalone tool-suite [ENST 2006] to process
AADL models and allow the programmer to develop, configure and deploy dis-
tributed systems. Ocarina offers scheduling analysis capabilities, connection with
formal verification tools, and more notably code generation to Ada 2005.

AADL provides two major benefits for prototyping DRE systems. First, com-
pared to other modeling languages, AADL defines low-level abstractions including
hardware descriptions. These abstractions are more likely to help design a detailed
prototype close to the final product. Second, the hybrid system components help
refine the architecture as they can be detailed later on during the design process.
For both reasons, we state that AADL is a good candidate for both prototyping
and designing DRE systems.

3. A RAPID PROTOTYPING PROCESS FOR DRE SYSTEMS

A DRE system is unique in that it should support two contradictory constraints:
it should be compatible with needs for critical systems (life-, mission-, business-)
and their normative process; but also embrace rapidly new standards or technolo-
gies [Leveson 1997]. This is a hot problem in distributed or embedded systems
where new standards or products arise frequently. It is difficult to handle both
specific development techniques (for embedded systems) as well as the evolution of
standards that might require big changes in a system’s architecture.

The contradiction is that both specific implementation techniques (i.e. to manage
a small memory footprint) and software architecture flexibility (to integrate new
techniques, for example when a product is upgraded) are simultaneously needed.
Also, a fast way to handle these evolutions is needed for market purposes.

Therefore, a prototyping process is of interest to test as soon as possible the
impact of deployment decisions, or the use of one software/hardware component
in the system. Tools can support this process and provide quick feedback and
executable programs to the developer for testing purposes.

3.1 Building prototypes
Two approaches in prototyping are usually distinguished [Kordon and Lugi 2002]:

(1) “throw-away”: prototypes are built to validate a concept, prior to implementing
the real system. The throw-away approach is used to refine requirements.

(2) “evolutionary”: prototypes tend to become the final product. Prototypes are
refined to create more accurate ones. The last prototype actually corresponds
to the final system (figure 2). Then, feedback on the system may be provided
at various levels and the model is the main reference for describing the system.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 5

Model (prototype)

Automated feedback
v Generation

Generated system

feedback

Fig. 2. Evolutionary prototyping

Given testing and validation costs, we believe an “evolutionary” approach should
be applied to DRE. Development should be refined through successive prototypes
that help designers to explore the design space of an application. It is a way to
preserve knowledge on the software and hardware that is precious and costly to
rebuild. Therefore, one should leverage previous knowledge to build new systems,
or refine existing ones.

3.2 Requirements for prototyping

A distributed real-time and embedded system can be seen as a collection of many
requirements covering many domains. System designers and developers need to de-
scribe both functional and non-functional requirements. These requirements must
then be sorted and enforced at the deployment level (e.g. specific dispatching pro-
tocols, transport mechanisms), or flagged as wrong by tools (potential deadlocks,
resource overrun).

Therefore, we list the following requirements for a prototyping process dedicated
to DRE systems:

[R1] support design-by-refinement: allowing one to test for different scenarios from
a common model; or to precise some elements later (promoting late binding
decisions);

[R2] be extensible to support new policies (e.g. dispatching, QoS, security, etc...)
via user-defined attributes;

[R3] support domain-specific analysis (e.g. model checking, schedulability analy-
sis, safety analysis);

[R’1] support DRE domain entities: software (threads, shared data) and hardware
(processors, buses, sensors);

[R’2] handle deployment of the system at both hardware and software levels in a
consistent manner.

We note the first three requirements are general ones, while the latter two are
specific to DRE systems. In this paper, we focus on DRE systems and address
them as a whole.

These requirements call for modeling formalisms as media to support refinement,
setting of attributes and analysis. Such modeling formalisms must support the
complete cycle depicted in figure 2.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

6 . J. Hugues et al.

Hence, built models should be exchangeable between tools, and eventually lead to
code generation to ease the construction of prototypes. Such a prototyping process
should therefore be compatible with an MDA-like development cycle [OMG 2001].
To reduce model discrepancy, one common modeling notation should be used and
conserved during the different steps of the process.

Without loss of generality, we chose the AADL as a core modeling language to
support the different steps of system construction, from early prototypes to final
implementation. Supported entities and extensible property sets allow one to build
full models and adapt them to the application context. Furthermore, analysis
tools can process the models to assess its viability, point out potential problems,
and complete the specification when possible (full resource dimensioning, execution
metrics).

3.3 Related Work

Generating High-Integrity code from a model is not limited to AADL models.
In [Bordin and Vardanega 2005], the authors state that generating code minimizes
the risk of several semantic breaches when translating the model towards code. The
manual coding exposes the developer to these breaches. They propose some guide-
lines to generate Ravenscar compliant Ada code from HRT-UML (Hard Real-Time
UML) which is a customized version of UML to model hard real-time systems.
However the use of UML does not allow a low-level description of the system. In
addition, the different views of the system (software view, concurrency view...) use
different formalisms. Therefore, to have a coherent model, one must modify all
views at each change of the system which does not help the rapid prototyping.

To have full control over middleware customization and to achieve minimal mem-
ory footprint, the graphical design tool Zen-Kit [Gorappa et al. 2005] allows middle-
ware customization by controlling the actual components embedded by the applica-
tion and minimizes the difficulty of this custom configuration. However, the focus
of this approach on RT-CORBA does not allow the modification of the middleware
architecture by adding new components that would diverge from the standard such
as a lightweight invocation protocol. Besides, the ZEN middleware is based on
many of the patterns and techniques from the ACE ORB (TAO [Schmidt et al.
1998]). These patterns are based on dynamic memory allocation and object ori-
ented programming and cannot be used in High Integrity Real-time systems.

More closely to this paper’s scope, the Annex D of the AADL [SAE 2005] de-
scribes some coding guidelines to translate the AADL software components into
source code (Ada and C). These rules are not complete mapping specifications, but
they provide guidelines for those who want to generate code from AADL models.
The annex does not address issues such as configuring the middleware depending
on the AADL model. In our knowledge, there is no implementation of the Annex D
of the AADL standard.

More concretely, STOOD, which is a tool developed by Ellidiss Software [Ellidiss-
Software 2007], allows users to model their real-time applications using the AADL
or the notations proposed by the HOOD method. STOOD allows the code gener-
ation from AADL to Ada by converting AADL models to HOOD models and then
applying the HOOD method to Ada mapping rules. However, the generated code
does not rely on a middleware layer and works only for local applications. Also,

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 7

some issues like automatic configuration and deployment and prior verification and
analysis of the model are not addressed.

In the following, we illustrate how the AADL allows the rapid prototyping of
complete ready-to-run systems.

4. RAPID PROTOTYPING USING THE AADL

In this section, we detail the use of AADL in a prototyping process, detailing our
model processing chain, using Ocarina and companion tools. Then, we assess it.

(1) Semantic Analysis (2) Schedulatiblity Analysis

Case_Study_System

Case_Study_Process Scheduling simulation, Processor rm0 : J

Scheduling Tool
777777777777777777777777 ®f1
o] - -
AADL model -
Model Checker

(3) Behavioral analysis

Fig. 3. Exploiting AADL models

4.1 Requirement Capture

AADL has been designed to build DRE systems. It is therefore no surprise it is
well suited to express their requirements in an easy way. The process implements
the following (possibly iterative) path to define and refine:

(1) data types and related functions to operate on them

(2) supporting runtime entities (threads) and interactions between them (through
ports and connections)

(3) association of subprograms to threads

(4) mapping of threads onto processes and binding processes to hardware entities
to form the deployed system.

For each AADL entity, properties can be attached to refine its non-functional
attributes (e.g. its WCET, its priority or its transport mechanisms).

Furthermore, AADL allows one to refine the description of each entity to de-
tail more precisely its behavior or some non-functional attributes, allowing one to
support design-by-refinement; or even to support inheritance to provide multiple
specializations of one component (e.g. a periodic sensor implemented as either a

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

8 . J. Hugues et al.

thermal or speed sensor). This allows us to have a library of reusable components
and helps in rapid prototyping by refining and extending them.

We list some sample (reduced) AADL models in code snippets 1 and 2. These
snippets correspond to an expanded description of the system represented graphi-
cally in figure 1.

data POS

features
Update : subprogram Update;
Read : subprogram Read;

properties
Concurrency_Control_Protocol => Priority_Ceiling;
end POS;

data implementation POS.Impl
subcomponents

Field : data POS_Internal_Type;
end POS.Impl;

subprogram Update
— Updates the internal value of POS
features

this : requires data access POS.Impl;
properties

source_language => Ada95;

source_name => " Repository.Update”;
end Update;

Listing 1. AADL data component

thread TMTC_Thread
features

TMTCPOS : requires data access POS.Impl;
end TMTC_Thread;

thread implementation TMTC_Thread. Impl

calls {
Welcome : subprogram TMTC_ldentity; — Display a begin—cycle message
TMTC_Job : subprogram TMTC_Job; — Compute
Update : subprogram POS.Update; — Update the shared variable
Bye : subprogram TMTC_ldentity; — Display an end—cycle message
b

connections
Cnx_.TMTC_1 : data access TMTCPOS —> Update. this;
properties

Dispatch_Protocol => Periodic;
Period => 100 ms;
Compute_Execution_time => 0 ms .. 50 ms;
Deadline => 100 ms;

end TMTC_Thread. Impl;

Listing 2. AADL TMTC Thread

4.2 AADL Model Assessments

AADL models support both code generation and model analysis. Analysis can
range from simple semantic analysis to more sophisticated ones such as schedula-
bility analysis, model checking of the behavior of the nodes, etc. ..

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 9

In this section, we show how such analysis can be conducted using Ocarina, our
AADL model processing suite. The supported development process is sketched
in figure 3 and conforms to the evolutionary prototyping approach. We empha-
size three main steps to be supported by our processing suite: semantic analysis,
schedulability analysis, verification of node behavior.

4.2.1 Semantic analysis. Our AADL compiler Ocarina checks that the given
AADL model conforms to the AADL grammar and that some additional restrictions
are respected:

—All event or data ports are connected, except those used to drive thread’s oper-
ational mode switch,

—All threads are either periodic or sporadic to be compliant with the Ravenscar
profile,

—All shared data use a concurrent access protocol that bounds priority inversion
(e.g. the Priority Ceiling Protocol mandated by the Ravenscar profile).

If an error is detected, the analyzer displays a comprehensible message describ-
ing the error and its location to help the programmer in rapidly correcting his
prototype.

AADL defines one standard execution semantics, this allows us to go further and
assess the system is coherent and can run prior to its generation and execution.

4.2.2 Schedulability analysis. Cheddar [Singhoff et al. 2004], an Ada framework
provides tools and libraries to check whether AADL threads will meet their deadline
at execution time. Cheddar uses the Ocarina [ENST 2006] libraries to analyze the
AADL models.

From an AADL model, a model of interacting tasks is computed. Tasks can inter-
act either locally sharing data through protected objects (or mutexes), or remotely
through a communication bus. The first allows for traditional Rate Monotonic
Analysis, while the second requires advanced techniques such as Holistic analy-
sis [Tindell 1993]. Cheddar supports both; this enables one to check whether one’s
architecture can run within expected bounds.

4.2.3 Verification of node behavior. To do so, we transform the AADL model
into a Petri net to perform formal verification. The transformation into Petri net is
performed using Ocarina’s Petri net generator module. The formal verification (e.g.
absence of deadlocks, etc...) is performed using CPN-AMI, a Petri Net modeling
and verification environment [Hamez et al. 2006; MoVe-Team 2007].

For each interaction pattern expressed in the AADL model (interacting tasks,
sent messages, etc...), we build the corresponding Petri Nets and assemble them
to build one full model representing the system. From this model, we can either
explore its state space and look for deadlock (state from which no progression is
possible), look for inconsistent state or test for more complex timed logical formulae
(such as if event € holds, then output O is always emitted).

These analyses allow one to fully assess system viability prior to its execution
on the target. If required, the model can be refined to correct the behavior, adjust
WCET; the model can also be updated after running some checks: e.g. priority or
bounds on buffers can be computed by Cheddar.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

10 . J. Hugues et al.

4.3 Code Generation Strategies

We use code generation facilities in Ocarina to 1) analyze the AADL model, 2) ex-
pand it, compute required resources and 3) generate code conforming to High-
Integrity (HI) restrictions.

First, the model is built by the application designer, he maps its application
entities onto a hardware architecture (1). Then, this architecture is tested for
completeness and soundness, any mismatch in the configuration is reported by the
analysis tool (e.g. lack of connection from an object) (2). Consequently, model pro-
cessing occurs, and code is generated from this AADL model, following the rules we
presented in the previous section (3). Finally, middleware components are selected
and compiled together with the generated code and the user implementations and
run on the target (4).

Code generation relies on well-known patterns for High-Integrity systems, inher-
ited from previous work on code generation from Ravenscar [Bordin and Vardanega
2005] and classical design patterns for distribution such as the Broker [Buschmann
et al. 1996], constrained to remove all dynamic behavior to be supported by the
minimal middleware for HI systems.

We named this middleware “PolyORB-HI” (PolyORB High-Integrity) as a follow
up to the PolyORB project we develop [Vergnaud et al. 2004]. It shares many
common architectural notions while using a different code base. As for PolyORB,
this middleware is built on isolated elements that embody key steps in request
processing, allowing for finer configuration of each blocks.

PolyORB-HI [Hugues et al. 2006] strictly follows restrictions set by High-Integrity
applications on object orientation, scheduling, use of memory. It is developed in
Ada 2005 [ISO/IEC 8652:2007(E) Ed. 3 2006]. It is compliant with both the
Ravenscar profile and the High-Integrity system restrictions (Annexes D and H of
the Ada 2005 standard). High-Integrity system restrictions are facilities provided
by the Ada 2005 standard to help developers understanding their program, review-
ing its code and restricting the language constructs that might compromise (or
complicate) the demonstration of program correctness. Most of these restrictions
are enforced at compile time (no dispatching, no floating point, no allocator, etc...).
This simply yet efficiently enforces no unwanted features are used by the middle-
ware, increasing the confidence in the code generated while limiting its complexity.
Code generated by Ocarina also follows the same compilation restrictions.

User code is also tested for consistency with the above restrictions. To ensure the
user code does not impact scheduling (which might modify scheduling, and thus
threatens asserted properties at the model-level), we ensure at compile-time it uses
no tasking constructs (tasks and protected objects) by positioning the correspond-
ing restrictions on all user-provided code. Any violation of these restrictions will
then be reported by the Ada compiler.

These steps allow the developer to go from the AADL model to executable code
and forth, using one common model annotated with all required functional and non-
functional elements, including its code base. Each tool works on the same model,
allowing one to debug or enhance it at different steps, following an evolutionary
prototyping approach. We discuss metrics of this process in section 6.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 11

4.4 System Deployment Strategies

Since the deployment and configuration of a distributed application are complex
tasks, they are usually performed automatically. There are two approaches to
deploy and configure automatically a distributed application:

—Dynamically, in this case, the selected components (deployment) are instantiated
dynamically using object factories and the interaction with these components
generally uses object oriented programming patterns [Schmidt et al. 2000] and
dynamic binding. The parametrization of the components (configuration) uses
dynamic memory allocation.

—Statically, in this case, an analysis of the application is performed to determine,
at compile time, the exact middleware components to be used by the application
(deployment) and the exact properties of these components (configuration).

The advantage of the dynamic approach is that it makes the application code
(provided by the user or generated automatically) simpler from a middleware de-
signer point of view. However, it has two major drawbacks that impede its use for
HI systems: (1) object oriented programming and dynamic binding have several
safety problems such as the difficulty to guarantee correct initialization of dispatch
tables which are the most classical way to implement dynamic binding in compiled
object oriented languages. Some analyses (dead-code detecting) and testing (code
coverage) become very hard to perform on object oriented programs [Gasperoni
2006]. (2) Dynamic memory allocation is not deterministic which may cause a
problem during WCET analysis for real-time systems.

The static configuration is more suitable for HI distributed systems. It requires
that an analysis phase computes statically all the resources (memory, bandwidth)
and configuration parameters (buffer sizes...) needed by the application. It is ob-
vious that the analysis phase is very tedious if performed by the programmer (it
has to be redone after any modification of an application parameter). However,
if the application is modeled using a well-chosen modeling language, this model is
analyzed automatically to compute all resources and a (large) part of the applica-
tion code can be generated automatically and contains all the statically computed
resources, and their configuration. We selected AADL to model facets of real-time
embedded systems. AADL is sufficient to detail the deployment view of the appli-
cation: nodes, processors, network buses, tasks on each node; properties refine the
type of tasks (periodicity, priority) and its associated implementation.

We defined our distribution model as a set of sender /receiver tuples that interact
through asynchronous messages. It is supported by an AADL architectural model
that defines the location of each node, and the payload of the message exchanged
as a thread-port name plus possible additional data. From a system’s AADL de-
scription, we compute required resources, then generate code for each logical node.
We review the elements supporting this distribution model:

(1) Naming table lists one entry per remote node that can be reached, and one
entry per opened communication channel on this node. We build one static
table per node, computed from the topology of the interactions described in
the AADL model. It is indexed by an enumeration affecting one tag per logical

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

12

J. Hugues et al.

node, resulting in O(1) access time to communication handlers (e.g. sockets,
SpaceWire).

Marshallers handle type conversion between network streams and actual ap-
plication data. They are derived from data components and thread interfaces,
they describe the structure of data to be exchanged. This is computed before-
hand from the AADL models, code has O(payload) complexity.

Stubs and skeletons handle the construction and analysis of network messages.
Stubs transform a request for an interaction into a network stream, skeletons
do the opposite operation. Both elements are built from AADL components
interface and actual interaction between threads. We exploit this knowledge to
have O(payload) components.

Protocol instances are asynchronous communication channels, set up at node
initialization time. The complexity of the action performed by these instances
depends on the underlying transport low-level layer (e.g. sockets, SpaceWire).
Concurrent objects handle the execution logic of the node. We build one task
per periodic or sporadic AADL thread. Subsequent tasks are built for the
management of the transport low-level layer (at least one additional task to
handle incoming network messages). Finally, we build one protected object
(mutex-like entity) to allow for communication between tasks. Let us note all
these objects strictly follow the Ravenscar Computation Model, ensuring code
is analyzable using RMA (Rate Monotonic Analysis) and Hierarchic scheduling
analysis[Davis and Burns 2005].

The generated code provides a framework that will call directly user code when
necessary. This relieves the user from the necessity to know an extensive API,
and allows a finer control of the behavior of the system that is under the sole
responsibility of the code generation patterns.

The generated code can be interfaced with the user-implementations in several
ways. A module of Ocarina, Build_Utils, handles the generation of makefiles with
proper options to use these implementations:

(1)

Source code: The user gives the source code of the implementation (in Ada or
C). In this case, the generated code will include the calls to the corresponding
unit name and the generated makefile will handle the compilation of the user
source files automatically.

Object files or libraries: The user indicates in the AADL model that the
implementation of a given subprogram is provided by a set of object files and/or
libraries. In this case, the generated code will include the calls to the compi-
lation units and the generated makefile will automatically include the linking
options against the given objects and/or libraries.

High level specialized language (LUSTRE, ...): The generated code will
include the calls to the compilation units that have to be generated from the
high level language source. The makefile will handle the generation of sources
from the high-level implementation and the compilation of these sources auto-
matically.

This allows a very rapid and flexible design of the system and does not restrict
the user implementations into a unique way.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 13

Generating code to configure these entities reduces the need for a large middle-
ware API. Hence, buffers, tasks, naming tables are allocated directly and statically
from the application models. This enables a finer control on the code structure, re-
ducing the need for complex structures to register application entities such as COR-
BA COS Naming, and the hand writing of error prone setup code (e.g. DDS [OMG
2004] policies).

5. THE MPC CASE STUDY

This case study has been provided by our partners from the IST-ASSERT project.
It is an extended version of the model we presented in figure 1.

5.1 Scenario

The figure 4 shows the software view of our case study. This model holds three
nodes, each is a spacecraft with different roles:

(1) SC1 is a leader spacecraft that contains a periodic thread which sends its po-
sition to SCy and SCjs.

(2) SCy and SCj3 are follower spacecraft. They receive the position sent by SCy
with a sporadic thread (Receiver_Thread), update their own position and store
it in a local protected object. A second thread in these two spacecraft reads
periodically the position value from the local protected object, and “watches
and reports” all elements at that position (e.g. earth observation, etc...).

Spacecraft_2

Spacecraft_1

Sender_Thread

D soiga e :

Fig. 4. Software view of the MPC case study

This model gathers typical elements from Distributed High Integrity (D-HI) sys-
tems, with a set of periodic tasks devoted to the processing of incoming orders
(Watcher_Thread), buffers to store these orders (Protected Object) and sporadic
threads to exchange data (Receiver_Thread). These entities work at different
rates, and should all respect their deadlines so that the Watcher_Thread can pro-
cess all observation orders in due time.

The software view only represents how the processing is distributed onto different
entities (threads) and gathered as AADL processes to form partitions. The next
step is to map this view onto a physical hardware view, so that CPU resources can
be affected to each node.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

14 : J. Hugues et al.

The figure 5 is a graphical representation of the deployment view of the system.
It only shows the global architecture of the application (number of nodes, their
mapping to hardware components). It indicates that each partition is bound to a
specific CPU, and how the communication between partitions occurs, using different
buses. The details of each node will also be described using AADL.

$.SC_2_Partition

SC_1_Partition

Fig. 5. Deployment view of the MPC case study

These two views are expressed using the same modeling notation, they can be
merged to form the complete system: interacting entities in the software view
represent the processing logic of the system, whereas the hardware view completes
the system deployment information by allocating resources.

From this combined view, a set of analyses can be conducted, in conformance
with the process we propose. In the following, we apply the methodology given in
section 4 to analyze, generate code and deploy the MPC case study.

5.2 AADL Models

To build this system, we sorted out the different fundamental blocks, in an incre-
mental fashion, from basic interaction between entities to their projection onto a
hardware architecture built around multiple nodes.

The flexibility of AADL allows us to partially define components and use them
in other components. This is very useful during the first steps of prototyping where
every detail of the system is not clear yet. Details can be added to these components
either by means of AADL properties or by component extension, without having
to redefine all other components.

5.2.1 Data types. AADL data components model the messages that are ex-
changed among the nodes of a distributed application or inside one of these nodes.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 15

To express the kind of a data type, we use custom AADL properties that are inter-
preted by our code generator to produce the proper type for the application (see
listings 3 and 4).

— The simple component type

data Component_Type
properties

ARAO:: Data_-Type => Integer;
end Component_Type;

— The record type used to vehicle information between nodes

data Record_Type
end Record_Type;

data implementation Record_Type.Impl
subcomponents

X : data Component_Type;

Y : data Component_Type;

Z : data Component_Type;
end Record_Type.Impl;

Listing 3. MPC’s classic data types

— The protected type used to store and consult data in a node

data Protected_Type
— Update and Read modify the state of Protected_-Type, protected
— against concurrent accesses using the Priority Ceiling Protocol.
features
Update : subprogram Update;
Read . subprogram Read;
properties
Concurrency_Control_Protocol => Priority_Ceiling;
end Protected_Type;

data implementation Protected_Type.Impl
subcomponents

X : data Component_Type;

Y : data Component_Type;

Z : data Component_Type;
end Protected_Type.Impl;

Listing 4. MPC’s protected data type

5.2.2 Subprograms. Subprograms encapsulate the behavioral aspects of a dis-
tributed application. They are modeled using the subprogram AADL component.
Since AADL does not allow the description of the system behavior, the implemen-
tation of AADL subprograms must be provided by the user.

The implementation of a subprogram may be written entirely by the user. In
this case he must indicate the source file or the pre-built libraries that contain
the implementation. The listing 5 shows the Update subprogram. Since this is an
accessor subprogram to a protected data type, it has a required access to this data
component (the “This” feature). This subprogram is implemented in Ada and its
implementation is given by the programmer in the package called MPC.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

16 . J. Hugues et al.

Subprograms can also be entirely specified with AADL if their behavior is limited
to the call of other subprograms. The listing 6 shows the Sender_Thread Wrapper
subprogram which simply calls another AADL subprogram called Observe_Object
(not showed in the listing). This subprogram models the “job” of a thread con-
tained in SC4 that sends periodically the spacecraft position to SCs and SC5. The
connections clause in the subprogram model describe the data flow between the
caller subprogram and the callee.

subprogram Update
— Updates the protected local object

features
Update_Value : in parameter Record_Type.Impl;
This : requires data access Protected_Type.Impl;

properties
Source_Language => Ada;
Source_Name => "MPC. Update”;
end Update;

Listing 5. MPC’s opaque subprogram

subprogram Sender_Thread_Wrapper
features

Data_Source : out parameter Record_Type.Impl;
end Sender_Thread_Wrapper;

subprogram implementation Sender_Thread_Wrapper.Impl
calls {
Send : subprogram Observe_Object;};
connections
parameter Send.Data_Source —> Data_Source;
end Sender_Thread_Wrapper.Impl;

Listing 6. MPC’s wrapper subprogram

AADL subprograms can be modeled in several other ways. Ocarina allows even
the direct reference to source written in synchronous languages such as LUSTRE
or to combine the “opaque” way with the “pure call sequence way” to have hybrid
subprograms that are more flexible. All this gives the programmer more flexibility
when prototyping his system.

5.2.3 Threads. Threads are active parts of a distributed application. A node
must contain at least one thread. The thread’s interface is constituted by “ports”.
There are three kinds of ports:

(1) event ports which can be assimilated to signals and are used to trigger the
threads and possibly change their operational mode.

(2) data ports which can be assimilated to messages between threads.

(3) event data ports which are like data ports but their reception triggers the
receiver thread.

Threads may be periodic, i.e. triggered by a time event. In this case, and
conforming to the Ravenscar Profile for HI systems [Dobbing et al. 2003], they
must not be triggered by any other event. Therefore, they must not contain in

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 17

event [data] ports. The listing 7 shows the AADL model of the periodic thread
Sender_Thread that is located in the node SC; of our case study. This thread
sends a data of type Record_Type shown in listing 3. The dispatch protocol of the
thread and its period are specified using standard AADL properties. In the thread
implementation, we describe the “job” of the thread by giving the subprogram that
models its activity.

Threads may also be sporadic, in this case they are triggered by an “incoming
event”. The listing 8 shows the AADL model of the sporadic thread Receiver_-
Thread that is located in SC5 and SC5 and is triggered by the reception of a position
sent from SC by thread Sender_Thread. The modeling of sporadic threads is very
similar to the modeling of periodic threads except that they must have at least one
in event [data] port in order for them to be triggered. The Period given for
Receiver_Thread indicates the minimal inter-arrival time between two successive
events and is necessary for the schedulability analysis of HI systems. The reader
should note that the receiver thread activity consists of updating the local protected
object that denotes the spacecraft position, so it requires an access to this variable.
Then, it connects this requirement to the subprogram that does the thread job
which will call the Update subprogram.

thread Sender_Thread
features
Data_Source : out event data port Record_Type.Impl;
properties
Dispatch_Protocol => Periodic;
Period => 1 Sec;
end Sender_Thread;

thread implementation Sender_Thread.Impl
calls

{Send : subprogram Observe_Object;};
connections

parameter Send.Data_Source —> Data_Source;
end Sender_Thread.Impl;

Listing 7. MPC’s periodic thread

thread Receiver_Thread

features
Protected_Local : requires data access Protected_Type.Impl;
Data_Sink : in event data port Record_Type.Impl;

properties
Dispatch_Protocol => Sporadic;
Period => 100 Ms;
end Receiver_Thread;

thread implementation Receiver_Thread.Impl
calls
{Update : subprogram Protected_Type.Update;};
connections
data access Protected_Local —> Update.Protected_Local;
parameter Data_Sink —> Update.Data_Sink;
end Receiver_Thread.Impl;

Listing 8. MPC’s sporadic thread

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

18 . J. Hugues et al.

5.2.4 Processes. Processes are the AADL components used to model the nodes
of distributed applications. The listing 9 shows the AADL model of the process
turning on SCf.

process Sender_Process
features

Data_Source : out event data port Record_Type.Impl;
end Sender_Process;

process implementation Sender_Process.Impl
subcomponents

Sender : thread Sender_Thread.Impl;
connections

event data port Sender.Data_Source —> Data_Source;
end Sender_Process.Impl;

Listing 9. MPC’s SCj node

5.3 Code Generation

In this section, we show how code generation helped us to rapidly prototype the
MPC case study and make it evolve from a very basic example to an elaborated
distributed application in a Ravenscar-compliant manner.

The first models were relatively simple and resulted in a first implementation
similar to the one depicted by figure 1. This implementation was evaluated to assert
the feasibility of the system and the first set of requirements. Thanks to this first
evaluation, both the requirements and the models were refined to integrate more
complex constructions. For instance, compared to the current models (figure 4), the
first version of the system was including only one node and discarding any remote
communication. These models have been enriched to evaluate the appropriateness
of introducing operational modes in threads. This last version is not presented here
as it is not fully finalized.

This prototyping process helped us to analyze the case study on a native plat-
form in order to easily debug and evaluate it before running it on an embedded
platform. It allowed us to progressively integrate the automatically generated com-
ponents with the functional user components and then to integrate the result with
the predefined middleware components. In the case of MPC, the models were up-
dated at several times to well separate the functional part from the non-functional
part. The integration phase has been taken into account very soon in the prototyp-
ing process. Thanks to the automatic code generation, all these refinements were
handled in a very short time.

As we wanted our system to be analyzable, it had to be compliant with the
Ravenscar Concurrent Model and all the High-Integrity Systems restrictions. This
compliance is ensured by the Ada compiler and are performed once all the code
sources are available. Therefore, the code generation step is a core step in the
prototyping process as it allows one to detect very soon any restriction violation.
In the context of MPC, several restrictions violations were detected in the user
components and have been fixed at compile time.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 19

5.4 Deployment

The separation between software and hardware in AADL allows the programmer
to model all the software part of his application, test it with a “native” platform
(generally a PC). Then, if the tests are successful, he can reuse the same software
part with the actual hardware AADL. In addition, going from one hardware ar-
chitecture to another is reduced (in most of the times) to the modification of the
values of a very few number of AADL properties.

5.4.1 Buses. A bus is the physical mean to perform the connection between the
different components of an application. For example, SpaceWire buses [ECSS 2003]
are used to connect distributed application nodes in the space domain.

The listing 10 shows a part of the AADL model for a SpaceWire bus. SpaceWire
buses are the buses used to connect the different spacecraft of our example in fig-
ure 5. We can see that the main characteristics of the bus are expressed using AADL
properties. Some of the properties are used without any prefix (Allowed Message_-
Size). These are standard AADL properties for bus components. Some other
properties are prefixed with “ASSERT_Properties::” (ASSERT_Properties::Ac-
cess_Bandwidth). These are properties that are user-defined, they are gathered in
a custom property set called ASSERT Properties.

bus SpaceWire_Bus
properties
ARAO:: Transport_APl => SpaceWire;

— Custom properties
ASSERT _Properties :: Access_Bandwidth => 100 Kbps;

— Standard properties
Allowed_Message_Size => 1 Kb .. 10 Kb;

end SpaceWire_Bus;

Listing 10. MPC’s SpaceWire bus

5.4.2 Memories. Memories are modeled using the memory AADL component.
This component is used to model all kinds of memories (RAM, ROM, Disks, mag-
netic tapes, etc...). The AADL properties within the component model refine the
component description and introduce more precisely its characteristics.

The listing 11 shows the AADL model for the random access memory (RAM)
used in each node of our example. This model introduces a new feature of the
AADL language, the required access to a bus. Since a memory has to be plugged in
a bus in order for it to be accessed by the processor (section 5.4.3), the AADL model
of a memory has to specify that this memory requires an access to a bus of a specific
kind. In our example, the memory has to be plugged in a bus called MemBus. As for
the bus component models, the memory model has several properties to introduce
more precisely the characteristics of the memory.

5.4.3 Processors. To model the processor and the operating system (or the real-
time kernel), we use the processor AADL component. Since processors are more

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

20 . J. Hugues et al.

memory RAM
features

Mem_Bus : requires bus access MemBus;
properties

ASSERT _Properties:: Memory_Size => 100 Kb;

end RAM

Listing 11. AADL memory component

complicated to model than buses or memories, we will use AADL extension features
to model them incrementally.

The first model in listing 12 shows a generic model for a LEON 2 processor!. This
is a very simple model that shows that the processor needs to access to a memory
bus (in order to read and write into the RAM) and specifies the processor frequency
by mean of the custom AADL property ASSERT Properties: :Processor_Speed.

The second model in the same listing describes a LEON 2 having an access to
a SpaceWire bus. The model LEON_2_OneSpaceWire enriches the LEON_2 model by
adding the corresponding bus access feature.

The last model in the listing enriches the definition of the LEON_2_OneSpaceWire
component by extending it and adding some properties relative to the GNAT for
LEON runtime [de la Puente et al. 2000]. The model does not show all the added
properties because the list is too long. Of course this component inherits all the
aspects of its parents (bus accesses and frequency).

— MODEL 1: Generic LEON 2 processor

processor LEON_.2
features

Mem_Bus : requires bus access MemBus;
properties

ASSERT _Properties:: processor_speed => 150 MHz;
end LEON._2;

— MODEL 2: LEON 2 processor with a SpaceWire bus
processor LEON_2_OneSpaceWire extends LEON_2
features
SPW : requires bus access SpaceWire;
end LEON_2_OneSpaceWire;
— MODEL 3: LEON 2 processor with a SpaceWire bus with GNAT 1.3 runtime
processor LEON_2_OneSpaceWire_.GNAT_1_3 extends LEON_2_OneSpaceWire
properties
ASSERT _Properties:: min_priority => 0;
ASSERT _Properties:: max_priority => 240;
Global_Scheduler_Policy => EDF;
— More properties ...

end LEON_2_OneSpaceWire.GNAT_1.3;

Listing 12. AADL processor component

LLEON is the micro-processor used by the European Space Agency in the next-generation satellites

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 21

6. METRICS

In this section, we detail how analyses and code generation can be combined to
build one ready-to-run system. Then we assess our process on the case study of
figure 4.

6.1 Schedulability analysis & Model checking

The case study we retained is well-formed following the Ravenscar profile. This
model focuses on a restricted set of the Ada concurrency model to ensure that
all Ravenscar-compliant programs can be fully analyzed following the Rate Mono-
tonic Analyses, and its extensions for distribution. Therefore, one can assess the
schedulability of the model.

In addition, a Petri model can be deduced from the architecture, allowing one
to check for deadlocks or do some time logic analysis. In the context of this case
study, such analysis is very trivial.

Intermediate models (Cheddar or Petri Net models) are of similar complexity
than the initial AADL model: they only reflect the number of communication
channels and its topology. This implies these analyses are not impeded by the
model transformation we propose, but by the initial AADL model and the analysis
capability of the tools.

In this respect, Cheddar can handle only limited time range for simulations.
CPN-AMI can handle large state spaces but is limited by typical combinatorial ex-
plosion problems. However, this was not a limit on this model. Besides, let us note
related work on the PolyORB project shows it is possible to tackle combinatorial
explosion issues by using optimized model checker [Hugues et al. 2004].

The three steps of our prototyping methodology are automated. So, if Cheddar
detects schedulability problems or CPN-AMI outlines an erroneous execution on
the associated Petri Net, the user just has to modify the AADL model and then
re-run the analysis. In many cases, Cheddar proposes to the user the corrections
that should be performed. CPN-AMI also provides relevant data (e.g an execution
path) when detecting problems such as a deadlock. Such information is relevant to
perform a new refinement step on the model.

6.2 Code generation

A prototype of PolyORB-HI, running on both ERC32 and LEON?2 targets has been
built. These processors are used by the European Space Agency for its next gener-
ation of embedded systems (satellites, vehicles, etc...). Thanks to Ada portability,
the same code can also be tested on native targets, or on other boards, such as
PowerPC-based. This makes the prototyping of embedded system easier since we
can test them on native platform before embedding them on their corresponding
hardware. In this section, we study the footprint of the code generated on LEON2
targets.

Table I summarizes the code size for the node SCs of our case study. It that
combines periodic and sporadic threads, data components and a SpaceWire inter-
face to receive inbound messages. We display both the actual lines of code (SLOCs)
and the size of the binary objects. The used compiler is the GNAT for LEON 1.3
Ada compiler. All tests were done in local, using the tsim simulator for LEON,

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

22 : J. Hugues et al.

emulating a 50M hz processor. The SpaceWire interface is simulated in tsim as an
I/0 module bound to the LEON processor.

The code generation strategy we retained maps AADL constructs onto Ada equiv-
alent ones so that there exists traceability between the AADL model and the cor-
responding Ada source code: e.g. between AADL threads and Ada tasks, AADL
data component and Ada records or protected objects. Such strategy reduces the
need for a large API, and eases code review after generation.

The total size of the executable, combining real-time kernel, middleware and
the application, is 576kB, using the GNAT for LEON 1.3 compiler. It fits the
requirements from minimal embedded systems, and is clearly under the typical
memory range for API-based middleware such as nORB or microORB, which are
above 1M B for a complete system, including full OS support.

Given the development process we retained, most code is automatically generated
from the AADL model. The code in the middleware handles simple and low-level
actions: messages, protocol, transport. Generated code adds tasking constructs
required to execute the application and enables interaction between entities: trans-
port handler, application activities, advanced marshallers, naming tables, etc. ..

The code generation strategy we chose accounts for a large part of the distribu-
tion aspects of the application: it includes the elaboration of tasks and protected
objects, the allocation of dedicated memory area, stubs and skeletons, marshallers
and naming table. Finally, the runtime accounts for another large part of the size
of the application.

Component SLOCs | .o size (bytes)
Application 89 8852
Generated code 961 66804
Middleware 1068 32957

Ada Run-Time + | N/A ~ 541Kb
drivers

Table I. Footprint for the SC2 node

6.3 Assessment of the process

From the AADL model, we are capable of generating both, information that the
model is sound and the corresponding executable, ready to run on LEON2 boards.

We demonstrate how to exploit one AADL model and user-provided code for
some processing functions. AADL serves both as a documentation of the system
(requirements expression, functional and non functional properties, topology of the
system can be expressed in one model) and as a template to validate it and generate
its implementation: it preserves system design.

Therefore, we have an immediate benefit from an engineering point of view: the
developer can focus on its system architecture. The complete tool suite ensures it
is correct, and handles the configuration of all code-level entities. This suppresses
many manual code writing, a tedious and error-prone process underlined by well-
known software failures in the space domain like the Ariane V maiden flight. It
also tremendously reduce the development cycle and allow one to go faster from
the prototyping phase to the design of the final system.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

From the Prototype to the Final Embedded System Using Ocarina . 23

7. CONCLUSION

In this paper, we proposed a rapid prototyping process to develop Distributed Real-
Time and Embedded (DRE) systems around the Architecture Analysis and Design
Language (AADL). We first motivated the need for such process, focusing on two
hard constraints: constraints to build and qualify such systems in a timely manner,
difficulty to master implementation and dimensioning issues.

We selected the AADL to implement an efficient rapid prototyping process for
DRE systems, focusing on its design-by-refinement approach, and its extensibility
through user-defined properties. We illustrated this approach by presenting our
current tool chain built around the Ocarina tool suite and the PolyORB High-
Integrity middleware. We assessed the process on complete examples to evaluate
each step.

We showed that an integrated set of tools enables the user to focus directly
on the overall system, and leverage his architecture to directly generate code for
High-Integrity systems without any user intervention. Besides, analysis tools have
been proposed to check model consistency and viability prior to generation. This
increases confidence in the model while being fully automated.

A system designed through our prototyping process is very close to the final
product. The user functional components have to be completed but the overall
design and the integration are mostly set up. A large part of the system has
already been validated. The user may have to check the schedulability of the final
system accounting the new WCET of new functional components. We claim our
approach significantly reduces the time needed to specify, prototype and produce a
distributed real-time embedded system.

Future work will consider a better integration of third party tools (stack bound
computation, precise WCET measurement tools, simulation...) with the Ocarina
tool suite, and the extension of the configuration of the middleware to a wider range
of platforms and requirements, addressing fault tolerance, or other schedulers, but
also other programming languages such as C or embedded Java variants.

ACKNOWLEDGMENTS

The authors thank F. SINGHOFF from the Cheddar project as well as M. BLANC-
QUART, D. THOMAS, P. Di1ssaux, J. S. CRUZ, M. PEROTTIN and the other members
of the IST-ASSERT project for their provided case studies and their feedback on
earlier version of this work.

REFERENCES

BORDIN, M. AND VARDANEGA, T. 2005. Automated Model-Based Generation of Ravenscar-
Compliant Source Code. In ECRTS ’05: Proceedings of the 17th Furomicro Conference on
Real-Time Systems (ECRTS’05). IEEE Computer Society, Washington, DC, USA, 59-67.

BuscHMmANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P.; AND STAL, M. 1996. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons, New York.

Davis, R. 1. AND BURNS, A. 2005. Hierarchical Fixed Priority Pre-Emptive Scheduling. In
RTSS ’05: Proceedings of the 26th IEEE International Real-Time Systems Symposium. IEEE
Computer Society, Washington, DC, USA, 389-398.

DE LA PUENTE, J. A., Ruiz, J. F.; AND ZAMORANO, J. 2000. An open ravenscar real-time kernel
for gnat. In Ada-Furope’00: Proceedings of the 5th Ada-Europe International Conference on
Reliable Software Technologies. Springer-Verlag, London, UK, 5-15.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

24 : J. Hugues et al.

DoOBBING, B., BURNS, A., AND VARDANEGA, T. 2003. Guide for the use of the of the Ravenscar
Profile in High Integrity Systems. Tech. rep.

ECSS. 2003. Space Engineering. Space Wire - Links, nodes, routers and networks.

ELLIDISS-SOFTWARE. 2007. STOOD. http://www.ellidiss.com/stood.shtml.

ENST. 2006. Ocarina: An AADL model processing suite. http://ocarina.enst.fr.

FEILER, P. H., GLucH, D. P., AND HUDAK, J. J. 2006. The Architecture Analysis & Design
Language (AADL): An Introduction. Tech. rep. CMU/SEI-2006-TN-011.

GASPERONI, F. 2006. Safety, security, and object-oriented programming. SIGBED Rev. 3, 4,
15-26.

GORAPPA, S., COLMENARES, J. A.; JAFARPOUR, H., AND KLEFSTAD, R. 2005. Tool-based Configu-
ration of Real-time CORBA Middleware for Embedded Systems. In International Symposium
on Object-oriented Real-time distributed Computing (ISORC’05). Seattle, USA.

HAMEZ, A., HiLLAH, L., KORDON, F., LINARD, A., PAVIOT-ADET, E., RENAULT, X., AND THIERRY-
MIEG, Y. 2006. New features in CPN-AMI 3 : focusing on the analysis of complex distributed
systems. In 6% International Conference on Application of Concurrency to System Design
(ACSD’06). IEEE Computer Society, Turku, Finland, 273-275.

Hucugs, J., THIERRY-MIEG, Y., KORDON, F., PAUTET, L., BAARIR, S., AND VERGNAUD, T. 2004.
On the Formal Verification of Middleware Behavioral Properties. In Proceedings of the 9th
International Workshop on Formal Methods for Industrial Critical Systems (FMICS’04). Vol.
ENTCS 133. Elsevier, Linz, Austria, 139 — 157.

HuUGUES, J., ZALILA, B., AND PAUTET, L. 2006. Middleware and Tool suite for High Integrity
Systems. In Proceedings of RTSS-WiP’06. IEEE, Rio de Janeiro, Brazil.

ISO/IEC 8652:2007(E) Ep. 3. 2006. Annotated Ada 2005 Language Reference Manual. Tech.
rep.

KorbpON, F. AND LuQi. 2002. An introduction to Rapid System Prototyping. IEEE Transaction
on Software Engineering 28, 9 (September), 817-821.

LEVESON, N. 1997. Software engineering: Stretching the limits of complexity. Communications
of the ACM 40(2), 129-131.

MoVE-TEAM. 2007. The CPN-AMI Home page, url: http://www.1lip6.fr/cpn-ami.

OMG. 2001. Model Driven Architecture (MDA), Document number ormsc/2001-07-01. Tech.
rep., OMG.

OMG. 2004. Data Distribution Service for Real-time Systems Specification version 1.0. OMG.
OMG Technical Document.

SAE. 2004. Architecture Analysis & Design Language (AS5506). available at http://www.sae.
org.

SAE. 2005. Language Compliance and Application Program Interface. SAE. The AADL Speci-
fication Document Annex D.

SAE. 2006. Open Source AADL Tool Environment. Tech. rep., SAE.

ScaMmiDpT, D., STAL, M., ROHNERT, H., AND BUSCHMANN, F. 2000. Pattern-Oriented Software
Architecture — Volume 2 — Patterns for Concurrent and Networked Objects. Wiley & Sons,
New York, NY, USA.

ScumipT, D. C.; LEVINE, D. L., AND MUNGEE, S. 1998. The design of the TAO real-time object
request broker. Computer Communications 21, 4 (Apr.), 294-324.

SINGHOFF, F., LEGRAND, J., TCHAMNDA, L. N., AND MARCE, L. 2004. Cheddar : a Flexible Real
Time Scheduling Framework. ACM Ada Letters journal, 24(4):1-8, ACM Press. Also published
in the proceedings of the ACM SIGADA International Conference, Atlanta, 15-18 November,
2004 .

TiNDELL, K. 1993. Holistic schedulability analysis for distributed hard real-time systems. Tech.
rep., University of York.

VERGNAUD, T., HUGUES, J., PAUTET, L., AND KORDON, F. 2004. PolyORB: a schizophrenic
middleware to build versatile reliable distributed applications. LNCS 3063, 106 — 119.

ACM Transactions on Computational Logic, Vol. V, No. N, March 2008.

