Gesellschaft
fiir Informatik e.V.

Petri Net Newsletter

Newsletter of the Volume 75
Special Interest Groups on ISSN 0931-1084

Petri Nets and
Related System Models October 2008

A mar # b n e §
A b o e ntied s W AR
W o it ot e Wl

R ——
f [Irpe—r

o Rl e Mo o gt phwons | |

) ton— .
SPT-CIEL T - fematva
iy oo e
b " L]
Rl i i L] --me”w
i o e
G O 3 sy, §
.

G P e STy e |
R e e
G i ot o s
e R Wt e . (K
1 B af s e s e |

Evinrude: A Tool to Automatically Transform
Program’s Sources into Petri Nets

Jean-Baptiste Voron & Fabrice Kordon

Université Pierre & Marie Curie
UMR CNRS 7606, LIP6 MoVe
4, place Jussieu, Paris, F-75005 France
jean-baptiste.voron@lip6.fr & fabrice.kordon@lip6.fr

Abstract. Model checking is a suitable formal technique to analyze par-
allel programs’ execution in an industrial context because automated
tools can be designed and operated with very limited knowledge of the
underlying techniques. However, the specification must be given using
dedicated notations that are not always familiar to engineers (so far,
model checking on UML raises complex problems that will not be solved
immediately).

This paper proposes an approach and its implementation as a tool to
perform transformation of C source code into Petri nets, a suitable spec-
ification for model checking. To overcome the complexity of the resulting
specification, we focus on specific aspects of the program. Hence, we
never model the entire processed program, but only its relevant parts.
In this paper, we will apply this approach on some examples using our
tool: Evinrude.

1 Introduction

Behavioral analysis of concurrent systems cannot be completed anymore using
only “traditional” test-based approaches. First, their complexity often makes
impossible to cover a significant part of the state space by simulation. Second,
testing concurrent systems is not trivial and may lead to complex problems like
probe effects [1]. To overcome these limitations, it is now recognized for many
years that formal methods are of interest since they provide more trustable and
mathematically founded information [2, 3].

Among the available formal verification techniques, model checking is par-
ticularly interesting due to its potential for full automation as well as its error
reporting capabilities [4,5]. So, neither a long training nor a long practice are
required from engineers, using model checkers to extract execution paths leading
to undesired behaviors.

However, the problem is about the way engineers design specifications too.
Most model checkers require formal specifications as inputs : Automata [6],
Promela [7], Petri nets [8], etc. These input formalisms may be difficult to learn.
They usually also propose a low level of abstraction not adapted to their use in
the context of industrial-size projects without extensive practice.

A way to avoid the learning of such languages is to consider verification at
source program level. This cannot replace a modeling/verification phase but it
is a way to tackle the specification problem that is crucial, especially in domains
related to security [9].

The aim of this paper is to propose an automatic translation of programs’
sources into colored Petri nets for analysis purpose. Such an analysis can be
performed to evaluate the behavior of these programs like we proposed in [10]
for intrusion detection systems. To tackle the combinatory explosion of gener-
ated models as well as their analysis, we propose to consider separately various
perspectives of the analyzed program. So, a property will be checked according
to the corresponding perspective.

In addition to the theoretical description, this work has also bee implemented
as a tool named Fvinrude. It basically takes a C program as input and produces
a Petri net ready to be analyzed. The architecture of this tool and some experi-
ments are presented in order to illustrate the approach.

This paper is structured as follows. Section 2 sketches a brief state of the
art and presents our objectives. Section 3 presents the Evinrude tool. Section 4
explains how we extract the information produced by GCC. Exploitation of this
information to produce and optimize Petri nets is detailed in sections 5 and 6.
Finally, we apply our technique to an example in section 7.

2 Objectives

Several methodologies and techniques have been investigated for decades to pro-
duce correct software. The objective is to track bugs and imperfections, through
program analysis.

2.1 Related work

Widely used in software engineering, static code analysis [11] is a technique that
looks for patterns known to generate errors or bad behaviors during execution
(such as bad pointer declaration, increment modification inside a loop, ete...)
into either the source or the object code. Most of languages such as C/C++ [12]
or Java [13, 14] are handled by common analyzers which are generally associated
to compilers.

In addition to errors finding, static code analysis can also be used in asso-
ciation with formal methods that can mathematically prove properties about a
given program. Hence, [15] defines formal software analysis and presents model
checking [16] as a foundation technique for software engineering. Instead of con-
sidering source code only, this kind of analysis consists in systematically search-
ing all possible behaviors of a system.

Model checking techniques are used by many software teams. Each one usu-
ally uses a dedicated modeling language. JavaPathFinder [17] or Bandera [18]
translates Java source code directly into Promela language, the input language of

20

SPIN [7]. Feaver [19] produces Promela from C programs; here, model construc-
tion relies on user-specifications that describe pairs of C and Promela patterns.
Another approach, SLAM [20], deduces predicate abstraction from a C program;
these skeletons (they only contain boolean instructions) are then used as input
to a dedicated model checker. VeriSoft [21] follows an approach base on a vari-
ation of previous model checking techniques. Indeed, it uses systematic testing
at the implementation level. State-space exploration is performed by controlling
and observing the execution of all visible operations in the concurrent processes
of the system uses this kind of verification approach.

However, producing program’s abstractions for a model checker require skills
in model building and also a deep understanding of the program: A bad inter-
pretation of the source code leads to a less accurate model that has bad impact
on the verification.

In addition to difficulties encountered during model construction, the size
of the resulting model can also be a problem. For some programs (generally
multi-threaded or parallel), we must consider the state space explosion problem.
Common solution adopted by the community is to decrease the precision of the
model, and thus, to reduce the precision of checked properties. Of course this
trade-off is not satisfactory when dealing with system security.

2.2 Objectives of this work

To cope with these challenges, we aim at producing a framework dedicated to
(i) program modeling and (ii) bugs and imperfections tracking through model
analysis. It should be able to deal with large and/or multi-threaded programs.

For the modeling part, our objective is to build models to perform formal
verifications. Model construction must be as automatic and precise as possible.
Moreover, to handle large programs, we want to provide engineers with a flexible
way to select sets of program’s specific behaviors they want to analyze.

For the analysis part, we focus on the reusability of existing analysis tools and
methods. Our factory must build models that can be processed by an existing
model checker (as it is done in most of the cited related works) and be used by
usual tools dedicated to formal verification.

From all these requirements, we have selected Petri nets as the intermediate
representation of the program. First, this formalism captures complex behaviors
in a compact way. In particular, colored Petri nets are particularly adapted to
handle parallel or multi-threaded behaviors (where similar patterns are executed
concurrently). Second, the use of Petri nets (more specifically Symmetric nets')
let us benefit from the large collection of provided dedicated tools, like CPN-
AMI [23] or GreatSPN [24].

! Symmetric nets were formerly known as Well-Formed nets, a subclass of High-level
Petri nets. The new name was chosen in the context of the ISO standardisation of
Petri nets [22].

21

3 Tool Overview

We have designed a tool to achieve detection of bugs and imperfections in pro-
grams: Bvinrude. It is made of several components as shown in figure 1. Each
one deals with a dedicated transformation which is a part of the entire transfor-
mation process.

Source code Internal Representation Petri Net Models

Builder
Module

Parser
Module

Optimization
Module

Toward Analysis

Fig. 1. Fvinrude tool’s overview

We highlight three major steps in this process. First, the parser module ana-
lyzes the program’s sources and transforms them into an internal representation
(a kind of rich abstract syntax tree) suitable for other modules (section 4).
Then, each of these representations is interpreted by the builder module which
produces a set of Petri nets (section 5). And finally, to reduce nets’ complexity,
the optimization module applies reductions techniques (section 6).

The exhaustive analysis of an entire program is very difficult, if it is not
impossible, since the number of instructions to be checked and properties to be
verified is huge and not well bounded. Consequently, we define a modular mod-
eling and a modular analysis dedicated to specific program’s behaviors. Given
two different programs, the set of studied behaviors may not be the same: some
of behaviors must be studied for both, others not. For example, some behaviors
are only relevant for programs that provide networking or parallel features.

Thus, it’s up to engineers to decide what are the behaviors they want to study.
To help them, we provide (packaged with the tool) a set of common behaviors
that should be studied. Engineers can also define their own if it is necessary. This
approach brings flexibility to our modeling and allows finer-grained analysis.
Considering security related domain, common analyzed behaviors should be:
system calls sequences (to avoid race conditions), synchronization mechanisms,
array bounds (to avoid buffer-overflows), user-defined invariants (to guaranty
security invariants) and i/o behaviors.

During the process, our framework considers program’s sources and instruc-
tions only if they are related to studied behaviors of the program. We call per-
spective each of these specific behaviors and remarkable element cach related
information extracted from the source code for this particular behavior. Each
perspective has its own set of remarkable elements which could be words, struc-
tures or more complex patterns defined into the perspective definition?.

? Transformation rules are also defines in perspective definition (see section 5)

22

The final output of our production factory is a set of colored Petri nets: each
one corresponding to a dedicated perspective. Once all nets have been generated,
it is possible to merge some of them (or all of them) into a single Petri net to
be processed by analysis tools.

4 Analyzing source files

Our first concern is to transform the source code into a representation that can
be automatically analyzed by dedicated tools. Considering our modular objec-
tive, the parser module must select relevant information according to engineers
specifications. Since we are not confident enough about compilation process, our
factory uses an existing compiler framework to do the first part of this process
while our component finishes the work.

4.1 Slicing the program using GCC

The parser module is a wrapper around the GNU Compiler Collection® (GCC)
in order to analyze source files. This choice gives us some independence from the
programming language (C, C++, Java, etc.) thanks to the various front-ends
available in this collection.

The very first operation, called slicing [25], is done by one of the many layers
of GCC. Among GCC’s output, we exploit the link report, that defines relations
between all sources files, and the control flow graph (CFG) of the program, i.e,
all paths that might be traversed through a program during its execution.

More precisely, GCC produces a file describing the program in terms of blocks
linked together. These blocks are arranged according to the program’s control
structures (functions, loops, conditionals) and are grouped into CFG functions.
Listing 1.1 shows some parts of a CFG extracted by GCC. Functions and blocks
are well visible. The corresponding C program is presented in section 7.

iy ;; Function philosopherl else goto <L2>;

24 # BLOCK 2 20 . # SUCC:3(true) 5(false)

3. # PRED:ENTRY (fallthru) 2.1 # BLOCK 65

4, printf (&"Philosopher 1... 292, # PRED:4(false)

5. goto <bb 4> (<L1>); 23. prinf (&"Philosopher 1...

6. # SUCC:4(fallthru) 24, pthread_exit (O0B);

T # BLOCK 3 25. # SUCC:EXIT

8. # PRED: 4 (true)

o pthread_mutex_lock (&fork3); 26. ;; Function main

10. pthread_mutex_lock (&forkl); 27. # BLOCK 2

1L printf (&"Philosopher 1... 28. # PRED:ENTRY(fallthru)

12, pthread _mutex_unlock (&fork3); 29. pthread_mutex_init (&food,0B);
13 pthread_mutex_unlock(&forkl); @ oy

14. # 8UCC:4(fallthru) 36. pthread_create

16. # BLOCK 4 (&phils ,0B,philosopherl ,0B);
16. # PRED:2(fallthru) 3(fallthru) Bils D.3880 = &phils[1];

17 D.3892 = food_on_table(); Fow

18. f = D.3892;

19. if (f != 0) goto <LO>; Listing 1.1. CFG produced by GCC

3 The parser module uses the fdump option of GCC awvailable since version 4.0.

23

After the slicing operation all control structures have been rewritten and in-
cluded in the CFG representation. Consequently, we do not deal anymore with
control structures like for, while, continue, break... but only with block se-
quences and function links. Even “evil sequences” are simplified by this opera-
tion.

4.2 Building a suitable representation

The builder and the optimization modules cannot directly use the CFG repre-
sentation (even if it is much simpler than the source code itself). Thus, the parser
module has to transform all gathered information into an internal representation
suitable for other modules (see figure 2).

refers to composed of
0.1y \ % ®1
AppAGation: [i) - Function & Block |e& Instruction
1 * 1 * 1 * *

|
L Call I lAssIgnementl I Key |

Fig. 2. Internal representation of an analyzed program

Objects Assignement and Call are more complex in the tool than presented
here. However, considering the example and the selected perspectives, this rep-
resentation is detailled enough to understand the process.

While building this representation the parser module extracts a symbols table
and a set of statistics about the program and all its dependencies. It also gives
advices on what perspectives should be requested for building and analysis. This
list only includes basic perspectives, and engineers can add theirs if necessary.
Table 1 presents these results for the studied example program.

Table 1. Information returned by the parser module

Application’s name: dining_philosopher (1 file)
Number of processed CFGs: 1 (320 instructions)

Number of processed functions: 8 (5 connected - 1 main function)
Recommended perspective selection: - structural perspective (struct)

- system calls perspective (syscall)
- pthread perspective (thread)

The representation can be saved into a XML file to be processed or re-
processed later without having to parse again the entire application source code.

24

5 Generating Petri Nets

As soon as the internal representation has been produced by the parser module,
the builder module produces a model for each selected perspective. The struct
perspective is always processed (and processed first) by the builder module since
it deals with the program structure. The result is the skeleton of the final model.

Models, generated using other perspectives, are linked to this skeleton. The
structural model and all other perspective’s models are then flattened to produce
the final Petri net (see figure 3).

Program's Structural Perspective
: 270N Skeleton
source code Internal Representation S -~ Flattened Model

k) ¥
N,
£y & N

Fig. 3. Perspectives increase the flexibility

’
Y .
P

A
Perspective #1 Perspective #2

In addition to remarkable elements, a perspective definition comes with a set
of transformation rules that associate remarkable elements to a set of actions to
be applied on the Petri net model (see section 3). The builder module uses these
transformation rules to produce all models.

A rule is defined by the following elements:

— its identifier and title
— if necessary, preconditions that must be satisfied prior to application
— the transformation algorithm

Instead of directly manipulating Petri nets, the builder module uses an inter-
nal representation using objects (see figure 4). This representation is dedicated
to manipulation and optimization of the model.

1 iscomposed «
Model Submodel |¢ : fiwa
1 e .
is composed |, . mp"‘
Al 2 0.1
o COTIaIE Place Transition
= 0.1

refers to

Fig. 4. Description of the internal representation used by the builder module

This representation brings hierarchy to Petri nets. Indeed, a model (or a
submodel) can contain one or more submodels connected by means of places. A
place can also refer to another one to make links between submodels.

25

5.1 The structural perspective

The structural (struct) perspective contains seven rules. The first two rules
(Structl and Struct2) are dedicated to blocks management.

Struct2: CFG functions.

We create two places for each analyzed function F
in the CFG. They are labeled F_entry and F_exit
where F is an ID attributed by the parser module.

Structl: CFG blocks.

We associate a place FX to each block X of]
a function where F is the function's iden-
tifier calculated by the parser module,

Q

42

4_entry 4_exit

Notes: Tllustration of rules are based on lines 1 to 20 of the CFG in listing 1.1%.
From now, we call function F (resp. block X), the function (resp. the block) whose
identifier, attributed by the parser module, is F (resp. X).

The next two rules (Struct3.1 and Struct3.2) deal with links between blocks.
The first rule browses blocks by following all successors paths. The second one
deals with predecessors paths.

Struct3.1: Successor links. Struct3.2: Predecessor links.

Given a block X of a function F. For each
block’s successor Y, we create a transition la-
belled struct_F_X.Y. Finally we link the place
associated to the block X to the new tran-
sition, and the new transition to the place

Given a block X of a function F. For each block’s
predecessor Y, we create a transition (if it does
not already exist) labelled struct. F.Y.X. Finally
we link the place associated to Y to the new tran-
sition, and the new transition to the place des-

designated by Y. ignated by X.

4_4
struct_4_4_5

4_entry
struct_4_4_3
I;I struct_4_entry 0

430 Os4s O 4z

Rule Struct4 creates links between functions. A link between two functions
exists only if both have an internal representation available (i.e. their source
code is in the program and not in a library). Otherwise, the call is considered as
a external call, and might be processed later by another perspective. The Petri
net example for this rule is built from line 17 of listing 1.1°.

Hierarchy: This transformation rule introduces a hierarchy in the model accord-
ing to precise guidelines :

— Each subnet is identified by an unique identifier derived from the instruction
counter of the CFG. This identifier is often written as I in rules definition.

— Each subnet has a set of incoming places and outgoing places. These places
are used to merge the subnet into the main net at the end of the build stage.

— A subnet can contain wirtual places that refer to existing places inside the
main net. Virtual places and their references are merged at the end of the
build stage too.

* The parser module has attributed id 4 to philosopheri function
® The parser module has attributed id 7 to the function food_on_table ()

26

Struct4: Links between functions.

Given a block X of a function F calling a function G. We define a subnet associated to the structural
place F.X defined as follows: we create two places labeled F_X_.G.call and F_X.G.return. The first
one is an #ncoming place. It is linked to a transition call F X.G which is linked to the wirtual
place G_Entry. For the return path, the virtual place G_Exit is linked to a transition return.F_X_G
which is linked to the place F_X_G_return. This last place is an outgoing place.

Y

{1

e ! () 442 cal retund 42 "3
O’ """ 3 ‘sity 7_exit i
E call_4_4 2 4_4_2_return i

Rule Struct4 does not fully control return path constructions. If two functions
A (id=1) and B (id=2) make a call to function C (id=0), the net produced by
Struct4 (figure 5(a)) allows bad return path. In the example, the sequence:
call_1_X_0, return_2_X_0 is a mistake but is allowed in the resulted model.

1_X_0_call ? ' (Pz_x_o_cau 1_X_0_call 2_X_0_call
1 O_Entry
call_1_X_0 :-{--O‘—l:l call_2_X_0 call 1.%.0 call_2_X_0
el path_1_X path_2_X
return_1_X_0 return_2 X_0 return_1_X_0 return_2_X_0
0. Exn \
1_X_0_return 2_X_0_return 1_X_0_return 2_X_0_return
) Bad return path (b) Controlled return path

Fig. 5. How to control the return path

Rules Structb and Structb address this problem. The first one controls the
function’s return path. The second one handles recursive constructions by con-
trolling nested function calls and returns.

Struct5: Return management. Struct6: Handle nested calls.

Each function call from F is associated with a place For each return.F X_G transition, we create
path.F.C where C is a unique call identifier calcu- a link from place path G.* to the return
lated by the parser module. We create a link from transition. Instead of a simple arc, this link
call FX.G to this new place and from this new is an inhibitor arc. Thus the transition is

place to the return F X G transition (see struct4). fireable only if all places path.G_* are empty.
@ : @
Y oy ES
4.4 2 call 1 4.4 2 call (@ 7_entry
7_entry ¥

call_4_4 2

1442 ?
25 call_4_ 1:1:——~O
O path4o O~ path 4.0

path_7_0

path_7 1

return_4_4_2 4—0 return_4_4_2
4 4 2 return p 4_4 2 return p

Initial marking: Finally, the initial marking is set up. A single non-colored token
corresponding to state of the program is put into place X Entry where X is the
identifier of the main function.

7 _exit

27

5.2 The system call perspective

System calls are remarkable elements of the syscall perspective. For each system
call, a dedicated subnet is created and associated with a place of the structural
model (rule Syscall0).

Syscall0: System call inclusion

Given a system call § in a block X of a function F. We associate a place F.X_I_pre, a transition
sys_FX_.I.S and a place FX_I_post (where I is the unique CFG’s instruction identifier) with the
structural place FX. F.X_I_pre is marked as an incoming place, F.X_I_post is marked an outgoing
place. We also create arcs along the path F.X.I_pre — sys.F.X.I.S — F.X_I.post.

4.2

O——J: sys_4 2 1_printf ;
i 4.2 1_post

; 4.2 1_pre

5.3 The thread perspective

Management of threads inside a C program usually involves three primitives:
pthread create, pthread_exit and pthread_join. The thread-perspective is
designed to handle this kind of behaviors. Other primitives like pthread kill
or pthread_self, which are also defined in POSIX library, are not handle by this
perspective since they do not directly modify the behavior of a thread. Moreover,
since it exists three different kinds of thread mutexes, we choose to only analyze
the behavior of the most portable one (that is used by default when dealing with
the library): PTHREAD_MUTEX_NORMAL

Rule Thread0 handles the creation of dedicated subnets, associated to a
structural place. As other perspectives, these subnets are merged at the end of
the build phase (see section 5.4).

Thread0: Thread primitives inclusion

Given a thread management primitive S in a block X of a function F. We associate a place F_X_I_pre,
a transition thread F X.I.S and a place F.X_I_post (where I is the unique CFG’s instruction identi-
fier) with the structural place FX. F X.I_pre is marked as an incoming place and F_X_I_post place
is marked as an outgoing place. We also create arcs along the path FX.I_pre — thread F.X.I.S —
F X_I_post.

=
=

K @
30 32 1 pre

O

thread_3_2_1_pthread_mutex_init

e
She S s Sl

3_2_1_post

I
b
5

Rule Threadl handles thread creation. A new thread is modeled as a new
token in the Petri net. Each token represents the state of a particular thread as
the program counter does in the system.

28

Threadl: Thread creation

The transition thread F_X_I.pthread.create (previously created by the rule Thread0) produces a
token into the G_entry place, where G is the identifier of function which be executed by the thread
(third parameter of the call). We create a virtual place that refers the G_entry place and an arc
between thread F_X_I_pthread.create transition and this virtual place.

‘Q 3.2 7 pre
3.2 thread_3_2_7_pthread_create

O‘“‘f I:l:]\
E p 3_2 7 post O 4 _entry

Rules Thread2 and Thread3 deal with thread termination. In a system, when
a thread dies, a part of its information is kept until another thread joined it.
After that, dead thread’s information is totally removed from the system.

Thus, when a thread ends, its corresponding token is put into the exit place
of the main function, waiting to be retrieved (joined) by another thread (see
rule Thread2). The join operation (which is a system blocking operation) is
modeled as trying to get a thread token from the ezit place of the main function
(see rule Thread3).

Thread2: Thread ending Thread3: Thread joining

The transition thread F X_I_pthread exit puts
the thread token into the exit place of main
function. So, we create a virtual place that
refers G.exit where G is the identifier of
main function. Finally, we create an arc from
thread F_X_I_pthread exit transition to this vir-
tual place.

The transition thread.F_X_I_pthread.-join con-
sumes a token from the exit place of the main
function. So, we create a virtual place that
refers G.exit where G is the identifier of main
function. Finally, we create an arc from this
virtual place to thread F_X_I_pthread join tran-

£

! Lo

4.5 2 pre
thread _0_5_2_ pthread_exit

-

4_exit

e e

0
L=

52,

4_exijt

sition.
- thread_3_3_3_pthread_join
3_3_3_post

Synchronization: Thread synchronization is handled by means of five primitives

dedicated to lock management.

— pthread mutex_init() and pthread mutex_destroy()
— pthread mutex_lock() and pthread mutex_trylock()

— pthread mutex_unlock()

Rules ThreadSynchrol and ThreadSynchro2 focus on mutex creation and
destruction. Mutexes are represented by a colored place typed by:
Chnutes: = {lock, free}. Status of a mutex is represented as follow:

— the mutex is locked when its corresponding place contains token lock,
— the mutex is unlocked when its corresponding place contains token free,
— the mutex has not been initialized when its corresponding place is empty.

ThreadSynchrol: Create a lock

ThreadSynchro2: Destroy a lock

We associate an empty place mutexX to
each created lock, where K is a unique
identifier computed by the parser mod-
ule. We create an arc between the transi-
tion thread F_X.I_pthread mutex.init and the
mutex K place. The arc’s valuation is set to free
meaning that the mutex is free.

Transition thread F X_I_pthread mutex destroy
consumes the token from the place mutex.K
whatever its value is. We create an arc be-
tween these two objects. Its valuation is set to
v. Obviously, any further access will generate
a blocking state. This particular state can be
detected at verification time.

5

z
FElieseenhE s,

<

Y
3.2

O._

(P 3.2 1_pre
thread_3_2_1_pthread_mutex_init

3_2_1_post mutex fork3

SR SR T S

23
5

f]
o (?EX‘I_pre
O_j thread_F_X_|_pthread_mutex_destroy §

! o :

! EIF_X_J_FQS{ mutex_K |

Locking and unlocking primitives are handled by the next two rules. We dis-
tinguish two behaviors when a lock is set. The first one (lock primitive) implies
a blocking state when the lock is already taken. The second one (trylock primi-
tive) is a non-blocking operation. Thus we design two versions of rule ThreadSyn-

chro3 to handle these two behaviors.

ThreadSynchro3.1: Take a lock

ThreadSynchro3.2: Try to lock

The transition thread F_X_.I_pthread.mutex.lock
consumes the colored token from the place
mutex K. If the value v of the token is free the
transition can be fired. Otherwise, the transi-
tion is disabled. The transition’s guard is set to
[v = free]. If fired, the transition puts a lock
token into the mutex.X place.

Transition thread F_X_I_pthread mutex_trylock
consumes the colored token from the place
mutex K. Whatever the value of the token is,
the transition is fired. After the firing, a lock
token is put into the mutex K place.

2
o

e o

3.3_1_pre
thread_3_3_1_pthread_mutex_lock

[v = free] e NS :
ool mutex_fork3
3.3 1_post

3.3

ot SR s

e

F_X_I_pre
thread_F_X_|_pthread_mutex_trylock

EAZTA.
Ll mutex_K
p F_X_|_post

Q%

S P S e

Releasing a lock consists in putting a free token into the mutex place.

ThreadSynchro4: Release a lock

The transition thread F X I pthread mutex unlock consumes the token of place mutex K. Whatever
its value is, the transition is fired and a free colored token is put into the place mutex K.

3_3_4_pre

(&}
()

<>
<free>

3_3_4 post

thread_3_3_4_pthread_mutex_unlock

@

mutex_fork3

5.4 Merging perspectives

At then end of the building phase, the resulting Petri net is made of:

— a skeleton, thanks to structural perpective;
— several subnets sticked to some structural places.

30

Since we do not perform analysis on our hierarchical model yet, we use an
algorithm (see algorithm 1) to flatten the model. This algorithm replaces struc-
tural places by a composition of all contained subnets. Once the model is flat, it
can be reduced and then analyzed.

Algorithm 1: Flatten the produced model

foreach p «— place of main net do

if p contains at least one subnet then

outgoings «— p

ouputs < getOutputTransitions(p)

foreach s « subnet inside p do
{copy all elements from the subnel to the main net }
copyAll(s,main)
{ereate links between two sets }
createlinks (outgoings, getIncomingsPlaces(s))
outgoings «+ getOutgoingsPlaces(s)

end

createLlinks (outgoings, ouputs)

end

end

{merge virtual places with their references }

foreach v « getVirtualPlaces(main) do

ref «— findPlaceByName (main,getReferenceName (v))

mergeTwoPlaces (v, ref)

end

6 Reducing Petri Nets

Because of all perspective’s production rules, our factory produces detailed mod-
els that are generally quite large (see table 6). But, while places and transitions
that come from perspectives selected by engineers are useful for analysis, ob-
jects from the structural model are not relevant anymore; especially because
these elements do not correspond to remarkable elements we want to observe.

Thus, we remove these useless parts in the model to reduce its size. To do
s0, we apply a set of reductions rules on the produced model. The two first rules
are slightly adapted from the ones of Haddad [26] to fit our strategy. The third
one detects a typical configuration that frequently happens in our models.

Pre-agglomeration of transitions aims at reducing sequences of transi-
tions. When a place p is accessed by the firing of a transition ¢ and left by the
firing of any output transition of p, we delete the place p and the transition ¢t and
make arcs between input places of ¢ and output transitions of p. This reduction
is valid only with transitions labeled as struct X_Y_Z.

Post-agglomeration of transitions is dedicated to conditional structures.
When all branches of a transition ¢ join up with the end of a block (which is

31

linked to another block), we directly link all branches to the next block. The
intermediate place is deleted.

Diamonds reduction concerns control structures likes switch. When no
remarkable elements is located in case blocks, a place p; is linked to several
transitions ¢; which are all linked to a place pa. We call this configuration a
diamond. Since all paths are equivalent in our model, we merge all transitions
into a single one. We then obtain the sequence: p; linked to ¢ linked to p.

7 Application to an example

We use a simple C program implementing the well known philosopher prob-
lem [27] to illustrate our approach. This code is a variation from the one used
by Sun Microsystems to benchmark their Thread analyzer [28].

7.1 The program

The program is presented in listing 1.2. The only change we made to original pro-
gram is a duplication of the philosopher code (presence of three philosophers
functions) to avoid data-flow analysis that is not yet processed by Ewvinrude.

1 #define FOOD 650 44
2 45 void * philosopher2 ()} {
3 pthread_mutex_t foodlock; 46 int f;
4 pthread_mutex_t forkl, fork2,fork3d; a7 printf ("Philoy2,sitting, down,to,dinner.\n");
5 pthread_t p[3]; 48 while((f = food_on_table())) {
G veid *philosopherl (); 49 pthread_mutex_lock (&forkl);
7 void *philosopher2 (); 50 pthread_mutex_lock (kfork2);
8 veid *philosopher3 (); 51 printf ("Philo, 2 eating.\n");
) int food_on_table (); 52 pthread_mutex_unlock (¢forki);
10 53 pthread_mutex_unlock (kfork2);
11 int main (int argn, char *xargv) { 54
12 int iy 55 printf ("Philoy2,is doneyeating.\n");
13 56 pthread_exit (NULL);
14 pthread_mutex_init (&foodlock ,NULL); 87 ¥
15 58
16 // Forks... 59 void * philosopher3d () {
b pthread _mutex_init (&forkl ,NULL); 60 int £;
18 pthread_mutex_init (&fork2 ,NULL); 61 printf ("Philo 3 sittingudown to,dinner.\n");
19 pthread mutex_init (Zfork3,NULL); 62 while ((f = food_on_table())) {
20 63 pthread _mutex_lock (#fork2);
21 // Philosophers 64 pthread_mutex_lock (&fork3);
22 pthread_create (&p[0],NULL,philosopher1l, NULL); 65 printf ("Philoy3y,eating.\n");
23 pthread_create (&p[i],NULL,philosopher2 ,NULL); 66 pthread_mutex_unlock (kfork2);
24 pthread_create (&p[2],NULL,philosopherd, NULL); a7 pthread_mutex_unlock (&fork3);
25 68 }
26 pthread_join(phils [0],NULL); 60 printf ("Philo,3 is doney eating.\n");
4 f pthread_join (phils [1],NULL); 70 pthread_exit (NULL);
28 pthread_jein(phils [2],NULL); 71 }
29 } 72
30 73 int food_on_table () {
31 void % philosopheri () { 74 static int food = FOOD;
32 int f; 75 int myfoed;
33 printf ("Phile 1ysitting down to dinner . \n"); 76
34 while((f = food_on_table())) { T pthread_mutex_lock (&foodlock);
35 pthread_mutex_lock (&fork3); 78 if (food > 0) { food--; }
36 pthread_mutex_lock (&forki); 79 myfood = food;
37 printf("Philo 1 eating.\n"); 80 pthread_mutex_unlock (&foodlock);
38 pthread_mutex_unlock (&fork3d); 81 return myfood;
39 pthread_mutex_unlock (&forki); 82
40
41 printf ("Philo_1,is, done eating.\n"); G A% :
42 pthread_exit(NULL); Listing 1.2. A philosopher program
43 A

Basically, the main program starts several threads executing a philosopherX
function implementing one philosopher’s behavior.

32

First, each philosopher looks for food on the table (the food_on_table func-
tion reads a shared ressource protected by a mutex). If there is food, the normal
process takes place and the philosopher tries to take two forks (which are distinct
mutexes). If not, the philosopher leaves the table (thread exits). At the end, the
main thread catches (join) all ended threads and terminates.

7.2 The generated Petri net

The dining philosopher program has been processed by Fvinrude. Perspectives
structural, syscall and threads have been selected. The resulted Petri net is dis-
played in figure 6. It has 36 places, 33 transitions and 110 arcs. The computation
takes less than 10 seconds including GCC analysis.

3.2_116_post oad_d_5_170_pthroad_exit throad_3_2_117_pthread_creats 3.2 117_post thread_3_2_119_pthread_create
™) e
. _J |_<*

3.2_114_post

i
—hread 3 2 114_pthread_mutex_init

2| 113_post s

thread_3_2_127_pthread_join

%

3.2 125 post

Il

thread_3_2 125 _pthread.

I

3 it

in’

321

}+——<froo> |
thread_3_2_115_pthread_mutex

thread_3_2 123 _pthre

ad_join

thread_exi

:-\a,z,n 5_post

'd

3_2_119_post

thread 3 2 _121_pthread_creale

3.2.121_post

Fig. 6. The Petri net produced from the philosopher example

33

We have drawn areas in the Petri net to outline major components they
represent according to the original program’s function :

— thick plain places represent mutexes,

— zone A corresponds to the philosopheri function,
— zone B corresponds to the philosopher2 function,
— zone D corresponds to the philosopher3 function,
— zone C corresponds to the food_on_table function,
— other places correspond to the main function.

Table 2 shows the reduction factor of the model during the optimization phase.

Table 2. Model’s size before and after optimizations

Before optimization|After optimization| Reduction factor
Places 99 36 65%
Transitions 91 a3 63%
Arcs 226 110 51%

7.3 Some analysis of the model

Some bad constructions such as structural infinite loops or structural dead code
can be automatically detected on the model. Infinite loops corresponds to a
cycle without any exit condition in the Petri net model. Structural dead code
corresponds to a subnet that is not connected to the main one.

Table 3. Details of terminal states found by the model checker

Terminal state #1 Terminal state #2
Marked place name | Marking | Marked place name | Marking
State_3_exit ° State_3.2.121 post s
Statemutex__fork2 free State mutex__fork2 lock
Statemutex__forkl Jree State_4_3_151_post °

State_mutex__fork3 free State mutex__forkil lock
State mutex.__foodlock free State mutex__fork3 lock
State 5.3.193_post °
State 6_3_235_post °
State mutex__foodlock free

For fine grained analysis, we use the CPN-AMI [23] Petri net tools. Let
us generate the state space and check for any terminal state. The state space
produced by Prod [29] in CPN-AMI has 845 nodes and 2413 arcs. Two terminal
states are detected. They are presented in table 3.

34

Terminal state #1 corresponds to a normal end of the program since the exit
place of the main function (3_exit) has only one token (there is no marking in
the threads subnets) and all shared resources are free.

Terminal state #2 corresponds to a deadlock. The program’s state is the fol-
lowing (we provide instruction identifiers in the CFG when relevant):

— all forks are handled by philosophers,

— philosopher 1 is waiting on instruction #151,
philosopher 2 is waiting on instruction #193,
philosopher 3 is waiting on instruction #235,
— main thread is waiting on instruction #121.

Evinrude is able to recognize an instruction identifier and to provide engineers
with its translation into C code. This code is extracted from the detailed CFG
produced by GCC. Thus, some syntax variations can happen. In the example,
table 4 shows associations returned by the tool:

Table 4. Relation between instruction identifier and C code

State ID| Associated C code
121 pthread_join (phils([0], 0B);
151 pthread mutex_lock (&forkl);
193 pthread mutex lock (&fork2);
235 pthread mutex_lock (&fork3);

The tool also highlights a sequence of 22 transition firings that leads to this
deadlock. From such a path, it is possible, as done before, to locate, outline and
animate the corresponding instructions in the C program by using the informa-
tion stored in the detailed CFG. Table 5 produces this trace in an comprehensive
way for an engineer.

7.4 Transforming larger programs

Since our global approach is dedicated to intrusion detection systems, our bench-
marks are more system-oriented than the philosopher problem and difficult to
present in a regular paper. Indeed, attackers often exploit flaws in programs to
get control of a computer, stole important data, etc. Generating a model of such
programs can lead to detection of flaws or possible entry points for attackers and
to prevent these kinds of attacks.

Bvinrude is able to deal with large and real programs. Here are some examples
of programs we have processed considering only the struct, syscall, processes and
thread perspectives.

gzip (v1.2.4) is a compression utility included in most of Unix systems. It has
been adopted by the GNU projects. It also often uses by FTP servers.

35

Table 5. A sequence of instructions leading to the deadlock

Main | Philo 1 | Philo2 | Philo3 |
pthread mutex.init (&foodlock, 0B); (#112)
pthread mutex_init (&forkl, 0B); (#113)
pthread mutex init (&fork2, 0B); (#114)
pthread mutex_init (&fork3, 0B); (#115)
pthread._create (¢phils, OB, philosopherl, OB); (#116)
pthread create (D.3880, OB, philosopher2, OB); (#118)
D.3901 = food_on_ table (); (#202)
pthread mutex_lock (&foodlock); (#274) (v=free)
pthread mutex.unlock (#foodlock); (#291) (v=lock)
return of food_on_table function; (#202)
pthread mutex_lock (&forkl); (#192) (v=free)
pthread create (D.3881, OB, philosopher3, OB); (#120)
D.3910 = food.on_table (); (#244)
pthread mutex_lock (&foodlock); (#274) (v=free)
pthread mutex.unlock (#foodlock); (#291) (v=lock)
D.3892 = food.on_table (); (#160)
pthread mutex lock (&foodlock); (#274) (v=free)
pthread mutex.unlock (&foodlock); (#291) (v=lock)
return of food.on_table function; (#160)
pthread mutex.lock (&fork3); (#150) (v=free)

return of food.on_table function; (#244)

L pthread mutex lock (&fork2); (#234) (v=free) J

wu-ftpd (v2.6.2) is a FTP server software for Unix systems. Up until early
2000s, it was the most common FTP server software in use.

lighttpd (v1.4.19) is light web-server that has been designed for high-perfor-
mance environments. It has also a low memory footprint.

Data about Petri nets generated from these three programs is provided in table 6.

Table 6. Modeling results for some UNIX programs

gzip wu-ftpd lighttpd
Program’s size (lines) 7788 18405 52336
Model ® 842/1119/2406(4 132/5331/1 17543 403/4 264/8 399
Optimized model ° 149/165/498 | 829/963/3018 | 673/761/2392

8 Conclusion

In this paper, we have presented Evinrude, a tool that translates a C program
into colored Petri nets for analysis purpose. Such an analysis is operated in the
context of Intrusion Detection Systems (IDS) where it is of interest to check
programs with regards to “dangerous” behaviors. This technique, called off-line
monitoring, is similar to performing model checking on programs.

6 In terms of places/transitions/arcs

36

We use GCC as a front-end to perform program slicing. We exploit infor-
mation from the Control Flow Graph (CFG) to produce our Petri nets. So, if
experimentation in the paper is done on C programs, our technique should be
applicable to any language processed by GCC without majors changes.

To reduce the size of the resulting Petri nets, we consider separate perspec-
tives on a program. A perspective groups remarkable elements to be observed in
the target Petri net model. Perspectives can be operated separately or chained,
according to what has to be observed.

Our approach relies on the perspective notion. A perspective is a way to
aggregate transformation techniques dedicated to a purpose (i.e. system calls,
synchronization, etc). Perspectives can be elaborated and adapted according to a
new purpose and provides flexibility for program analysis. Perspectives may alos
be used separately (to focus on one aspect to be analyzed). Finally, they can be
composed when several aspects of a program must be analyzed simultaneously
(because they interact).

So, Ewinrude’s transformation process relies on rules associated to a per-
spective. Our Petri net generator applies the rules associated to the selected
perspective. Once the Petri net is generated, we apply an optimization phase
that mainly relies on Haddad’s reductions [26].

The way we can create, select and compose perspectives in Evinrude allows
one to control the complexity of specifications produced from source code.

References

1. Krawczyk, H., Wiszniewski, B.: Analysis and Testing of Distributed Software
Applications. Taylor & Francis, Inc., Bristol, PA, USA (1998)

2. Clarke, B., Wing, J., et al.: Formal methods: state of the art and future directions.
ACM Computing Surveys 28(4) (1996) 626-643

3. Gogen, J., Luqi: Formal methods: Promises and problems. IEEE Software 14(1)
(1997) 75-85

4. Brim, L.: Parallel model-checking. ERCIM news, special section on Automated
Software Engineering 58 (July 2004) 35

5. Edelkamp, S., Leue, S., Lluch-Lafuente, A., Visser, W.: Dagstuhl Seminar on
Directed Model Checking (April 2006)

6. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoe-
belen, P., McKenzie, P.: Model Cjhecking. In: Systems and Software Verification:
Model-Checking Techniques and Tools. Springer Verlag (2001) 39-46

7. Holzmann, G.: An Overview of PROMELA. In: The SPIN model checker. Addison-
Wesley (2004) 33-72

8. Girault, C., Valk, R.: Petri Nets for Systems Engineering. Springer Verlag - ISBN:
3-540-41217-4 (2003)

9. Debar, H.: An introduction to intrusion-detection systems. In: Proceedings of
Connect’2000, Doha, Qatar, April 29th-May 1st, 2000. (2000)

10. Kordon, F., Voron, J.B., Iftode, L.: Rapid Prototyping of Intrusion Detection
Systems. In: Proceedings of the 18th International Workshop on Rapid System
Prototyping, Porto Alegre, Brazil, IEEE Computer Society (2007) 89-96

37

11.

12,

13.

14.

15.

16.
17.

18.

19.

20.

21,

22.

23.

24.

25.

26.

27

28.
29.

Binkley, D.: Source code analysis: A road map. In: FOSE '07: 2007 Future of
Software Engineering, Washington, DC, USA, TEEE Computer Society (2007) 104—
119

Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic
programming errors. Softw. Pract. Exper. 30(7) (2000) 775-802

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI 02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation, New York,
NY, USA, ACM Press (2002) 234-245

Cole, B., Hakim, D., Hovemeyer, D., Lazarus, R., Pugh, W., Stephens, K.: Improv-
ing your software using static analysis to find bugs. In: OOPSLA '06: Companion
to the 21st ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, New York, NY, USA, ACM Press (2006) 673-674
Dwyer, M.B., Hatcliff, J., Robby, R., Pasareanu, C.S., Visser, W.: Formal software
analysis emerging trends in software model checking. In: FOSE ’07: 2007 Future
of Software Engineering, Washington, DC, USA, IEEE Computer Society (2007)
120-136

Clarke, E., O.Grumberg, Peled, A.: Model Checking. MIT Press (2000)
Havelund, K., Pressburger, T.. Model checking java programs using java
pathfinder. STTT 2(4) (2000) 366-381

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Zheng, H.: Bandera: extracting finite-state models from java source code. In: ICSE
’00: Proceedings of the 22nd international conference on Software engineering, New
York, NY, USA, ACM Press (2000) 439-448

Holzmann, G.J., Smith, M.H.: A practical method for verifying event-driven soft-
ware. In: ICSE ’99: Proceedings of the 21st international conference on Software
engineering, Los Alamitos, CA, USA, IEEE Computer Society Press (1999) 597—
607

Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of ¢ programs. SIGPLAN Not. 36(5) (2001) 203-213

Godefroid, P.: Software model checking: The verisoft approach. Formal Methods
in System Design 26(2) (2005) 77-101

Hillah, L., Kordon, F., Petrucci, L., Treves, N.: PN standardisation : a survey.
In: International Conference on Formal Methods for Networked and Distributed
Systems (FORTE’06), Paris, France, IFIP (September 2006) 307-322
Move-Team: The CPN-AMI Home page, http://www.1ip6.fr/cpn-ami (2006)
GreatSPN: The GreatSPN Home page, http://www.di.unito.it/~greatspn
Tip, F.: A survey of program slicing techniques. Technical report, Amsterdam,
The Netherlands, The Netherlands (1994)

Haddad, S.: A reduction theory for coloured nets. In: Advances in Petri Nets
1989, covers the 9th European Workshop on Applications and Theory in Petri
Nets-selected papers, London, UK, Springer-Verlag (1990) 209-235

Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1 (1971)
115-138

Microsystem, S.: Sun studio express - thread analyzer readme

Varpaaniemi, K.: Prod: An advanced tool for efficient reachability analysis. http:
//www.tcs. hut.fi/Software/prod

38

