
J.L.G. Dietz et al. (Eds.): CIAO! 2008 and EOMAS 2008, LNBIP 10, pp. 78–92, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Petri-Net Based Formalisation of Interaction Protocols
Applied to Business Process Integration

Djamel Benmerzoug1, Fabrice Kordon2, and Mahmoud Boufaida1

1 LIRE Laboratory, Computer Science Department,
Mentouri University of Constantine 25000, Algeria

{benmerzougdj,boufaida_mahmoud}@yahoo.fr
2 LIP6 Laboratory, Pierre et Marie Curie University,

4, place Jussieu, 75252 Paris Cedex 05 France
fabrice.kordon@lip6.fr

Abstract. This paper presents a new approach for Business Process Integration
based on Interaction Protocols. It enables both integration and collaboration of
autonomous and distributed business processes modules. We present a semantic
formalisation of the interaction protocols notations used in our approach. The
semantics and its application are described on the basis of translation rules to
Coloured Petri Nets and the benefits of formalisation are shown. The verified
and validated interaction protocols specification is exploited afterwards with an
intermediate agent called « Integrator Agent » to enact the integration process
and to manage it efficiently in all steps of composition and monitoring.

Keywords: Business Processes Integration, Interaction Protocols, Coloured
Petri Nets, Multi-agent Systems.

1 Introduction

Unlike traditional business processes, processes in open, Web-based settings typically
involve complex interactions among autonomous, heterogeneous business partners. In
such environments there is a clear need for advanced business applications to
coordinate multiple business processes into a multi-step business transaction. This
requires that several business operations or processes attain transactional properties
reflecting business semantics, which are to be treated as a single logical unit of work
[1]. This orientation requires distilling from the structure of businesses collaboration
the key capabilities that must necessarily be present in a Business Process Integration
(BPI) scenario and specifying them accurately and independently from any specific
implementation mechanisms.

Web services are a promising technology to support business processes coordination
and collaboration [2][3]. They are an XML-based middleware that provides RPC-like
remote communication, using in most cases SOAP over HTTP. Web services are
designed to allow machine-to-machine interactions. This interaction takes place over a
network, such as the Internet, so Web services are by definition distributed, and operate
in an open and highly dynamic environment.

Heterogeneity, distribution, openness, highly dynamic interactions, are some among
the key characteristics of another emerging technology, that of intelligent agents and

 A Petri-Net Based Formalisation of Interaction Protocols 79

Multi-Agent Systems (MAS). M. Luck et al. [4] propose the following definition: "an
agent is a computer system that is capable of flexible autonomous action in dynamic,
unpredictable, typically multi-agent domains."

We already proposed a new approach based on Web services and agents for
integrating business processes [5]. The BPI modeling is based on Interaction
Protocols (IP) that enable autonomous, distributed business process management
modules to integrate and collaborate.

IP are a useful way for structuring communicative interaction among business
process management modules, by organizing messages into relevant contexts and
providing a common guide to all parties. The value of IP-based approach is largely
determined by the interaction model it uses. The presence of an underlying formal
model supports the use of structured design techniques and formal analysis and
verification, facilitating development, composition and reuse.

Most IP modeling projects to date have used or extended finite state machines
(FSM) and state transition diagram (STD) in various ways [8]. FSM and STD are
simple, depict the flow of action/communication in an intuitive way, and are
sufficient for many sequential of interactions. However, they are note adequately
expressive to model more complex interactions, especially those with some degree of
concurrency. In the other hand, Coloured Petri Nets (CPN) [9] are a well known and
established model of concurrency, and can support the expression of a greater range
of interactions. In addition, CPN like FSM, have an intuitive graphical representation,
are relatively simple to implement, and are accompanied with a variety of techniques
and tools for formal analysis and design.

Unfortunately, the existing works on the use of formal models to represent IP leave
open several questions [8], [16], [19], [21]. Most previous investigations have not
provided a systematic comprehensive coverage of all issues that arise when
representing complex protocols such as intra-Enterprise Application Integration (EAI)
as well as the inter-enterprise integration (B2B, for Business to Business).

This paper presents a generic approach for the BPI based on interaction protocols.
Translation rules of IP based on AUML/BPEL4WS [13],[14] notations into CPN are
proposed, enabling their formal analysis and verification. We provide interactions
building blocks allowing this translation to model complex e-business applications
that enable autonomous, distributed business process management modules to
integrate and collaborate.

This CPN-based representation can be used to essentially cover all the features
used in IP standards, including communicative act attributes (such as message guards
and cardinalities) and protocol nesting. Also, we present a skeleton automated
procedure for converting an IP specification to an equivalent CPN, and demonstrate
its use through a case study.

In the next section we, briefly present our approach. Section 3 describes a CPN
based representation of IP. In section 4, we provide a skeletal algorithm for
converting BPI based on interaction protocols in AUML/BPEL4WS to Coloured Petri
nets. Section 5 shows how the verified and the validated IP specification can be
exploited by the MAS to enact the BPI. Related work is discussed in section 6 and
conclusions are drawn in section 7.

80 D. Benmerzoug, F. Kordon, and M. Boufaida

2 An Overview of the Proposed Approach

In recent years, BPI modeling and reengineering have been longstanding activities in
many companies. Most internal processes have been streamlined and optimized,
whereas the external processes have only recently become the focus of business
analysts and IT middleware providers. The static integration of inter-enterprise
processes as common in past years can no longer meet the new requirements of
customer orientation, flexibility and dynamics of cooperation [10].

In [6],[7] we have developed an agent-based method for developing cooperative
enterprises information systems. This method permits to explicitly map the business
process into software agents. In [5], we have described the use of IP to define and
manage public processes in B2B relationships. This process is modelled using AUML
(Agent UML [13]) and specified with BPEL4WS [14].

In this approach, we consider two types of business processes, the private processes
and the public ones. The first type is considered as the set of processes of the
company itself and they are managed in an autonomous way. Private processes are
supported within companies using traditional Workflow Management Systems,
Enterprise Resources Planning systems or proprietary systems. These systems were
intended to serve local needs. In other hand, public processes span organizational
boundaries. They belong to the companies involved in a B2B relationship and have to
be agreed and jointly managed by the partners.

IP

<SOAP>

<XML Documents>

Petri net
FIPA compliant Agent
Management System

AgentAgentAgent

Company

<FIPA ACL>

Mathematical methods for
evaluation of Petri nets

Design
Space

Implementation
Space

CompanyCompany

W
eb Services

AUML/OCL
Model

BPEL4WS
Specification

Other MAS Applications

Fig. 1. The proposed approach

The B2B integration scenarios typically involve distributed business processes that
are autonomous to some degree. Companies participating in this scenario publish and
implement a public process. The applications integration based on public process is
not a new approach. The current models for BPI are based on process flow graphs
[11], [12]. A process flow graph is used to represent the public process. This approach
lacks the flexibility for supporting dynamic B2B integration. In contrast, our approach
(figure 1) presents an incremental, open-ended, dynamic, and personalizable model
for B2B integration.

 A Petri-Net Based Formalisation of Interaction Protocols 81

The use of IP to define public processes enables a greater autonomy of companies
because each company hides its internal activities, services and decisions required to
support public processes. In this way, the IP provide a high abstraction level in the
modelling of public processes. The AUML model is mapped to a BPEL4WS
specification, which represents the initial social order upon a collection of agents
(figure 1). Since BPEL4WS describes the relationships between the Web services in
the public process, agents representing the Web services would know their
relationships a priori. Notably, the relationships between the Web services in the
public process are embedded in the process logic of the BPEL4WS specification.

This relationship entails consistency problems, which can at best be solved at the
level of models. Indeed, we used the BPEL4WS specification to generate a validation
tool that can check that a BPEL4WS document is well-formed (the BPEL4WS
preserves the business constraints, which are specified by means of OCL (Object
Constraint Language [23])). In this work, we have exploited the Sun Microsystem
Web Services Developer Pack [15]. In particular, we have used the JAXB (Java
Architecture for XML Binding) library to build Java classes from a BPEL4WS
specification (for more detail see [5]).

In this paper, we address the problem of verification of BPI based on interaction
protocols. Indeed, we propose a novel and flexible representation of protocols that
uses CPN in which, interaction building blocks explicitly denote joint conversation
states and messages. So, interaction protocols specification can be translated to an
equivalent CPN model and CPN tools can afterwards be used to analyze the process.

3 A CPN-Based Model for BPI Based on Interaction Protocol

BPI is defined as an interaction protocol involving different companies. It specifies
the interaction between local business process and Web services and their
coordination. For this purpose, we define the IP as follow:

Definition: An Interaction Protocol is a quadruplet: IP = <ID, R, M, ƒM>, where:

− ID is the identify of the interaction protocol
− R = {r1, r2, …, rn} (n>1) is a set of Roles (private business process or Web

Services)
− M is a set of non-empty primitive (or/and) complex messages, where:

 A Primitive Message (PM) corresponds to the simple message, it is defined as
follow: PM = <Sender, Receiver, CA, Option>, where:

o Sender, Receiver ∈ R
o CA ∈ FIPA ACL (Communicative Act such as: cfp, inform, …)
o Option: contain additional information (Synchronous / Asynchronous

message, constraints on message, …)
 A Complex Message (CM) is built from simpler (primitive) ones by means of
operators: CM = PM1 op PM2 … op PMm.where:

o m>1, op ∈ {OR, XOR, AND}, and
o ∀ i ∈ [1, m[, PMi.Sender = PMi+1.Sender, PMi.Sender ∈ R .

− ƒM: a flow relation defined as : ƒM ⊆ (RxR), where (RxR) is a Cartesian product
(r1,r2) ∈ (RxR), for r1,r2 ∈ R

82 D. Benmerzoug, F. Kordon, and M. Boufaida

Ideally, IP should be represented in a way that allows performance analysis, validation
and verification, automated monitoring, debugging, etc. Various formalisms have been
proposed for such purposes. However, Petri nets have been shown to offer significant
advantages in representing IP, compared to other approaches [16]. Specifically, Petri nets
are useful in validation and testing, automated debugging and monitoring and dynamic
interpretation of IP.

Our main motivation in describing the semantics of IP applied to BPI by using
CPN is that the existence of several variation points allows different semantic
interpretations that might be required in different application domains. This is usually
our case, and so, high-level Petri nets are used as formal specification. This provides
the following advantages:

− CPN provide true concurrency semantics by means of the step concept, i.e. when at
least two non-conflictive transitions may occur at the same time. It is the ideal
situation for our application domain (several activities moving within the same
space of states: the <flow>  section in BPEL4WS).

− The combination of states, activities, decisions, primitives and complex message
exchanges (namely fork-join constructions) means that the IP notations are very
rich. CPN allow us to express, in the same formalism, both the kind of system we
are dealing with and its execution.

− Formal semantic is better in order to carry out a complete and highly automated
analysis for the system being designed.

3.1 Translation Rules from IP Elements to CPN

The objective of this section is to propose some general rules which may be applied to
formally specify interaction protocols endowing them with a formal semantics. Such a
semantics will enable the designer to validate his/her specifications. As shown in the
translation rules in Table 1, we focus on the description of dynamic aspects of protocols
using the CPN’s elements (places, transitions, arcs, functions, variables and domains).

The CPN representation in Table 1 introduces the use of token colours to represent
additional information about business processes interaction states and communicative
acts of the corresponding interaction. The token colour sets are defined in the net
declaration as follow: (the syntax follows standard CPN-notation [9])

Colour sets :
Communicative Act = with inform|cfp|propose|… ;
Role = string with “a”.. “z” ; // Role = {r

1
, r

2
, …}, r

i
 ∈ R

Content = string with “a”.. “z” ;
Bool = with true|false;
MSG = record s,r: Role; CA: Communicative Act; C: Content
Variables:msg, msg1, msg2: MSG; x: Bool;

The MSG colour set describes communicative acts interaction and is associated

with the net message places. The MSG’s coloured token is a record <s,r,ca,c>, where
the s and r elements determine the sender and the receiver of the corresponding
message. This elements have the colour set ROLE, which is used to identify business
processes or/and Web services participating in the corresponding interaction. The
COMMUNICATIVE ACT and the CONTENT colour sets represent respectively the FIPA-
ACL communicative acts and the content of the corresponding message. We note that

 A Petri-Net Based Formalisation of Interaction Protocols 83

places without colour set hold an indistinguishable token and therefore have the
colour domain token = { }.

We now show how various interaction protocols features described in our work can
be represented using the CPN formalism.

R1: A role (the <partner> section in BPEL4WS) is considered equivalent to a type of
resource, which is represented in a Petri net as a place. Hence, there will be one token
in the place for each actor playing this role. Each one of these places is labelled with
the corresponding role name.

R2: The “life line” of role is represented implicitly by a places and transitions sequence
belonging to this role. The net is constituted therefore by one sub-net (Petri net process)
for each role acting during the interaction and these nets are connected by places that
correspond to the exchanged messages.

R3: A message exchange between two roles is represented by a synchronization place
and arcs. The first ongoing arc connects the transition of “message sending” to the
“synchronization place”, while the second outgoing arc connects this place to the
“receiving message transition”.

R4: A primitive message exchange: As we have already said, a primitive message
corresponds to the simple message. A <receive> and <reply> activities (asynchronous
messages) are represented by a transition which has an in-place and out-place (see R3
in Table 1). An <invoke> activity (synchronous messages) is represented by a pair of
transitions, one of them may fire a request token to the sub-net of the receiver role,
and the other may wait for a token from this sub-net.

R5: A complex message exchange: A complex message is represented by a substitution
transition. The control flow between messages exchange is captured by connecting the
activity-related transitions with arcs, places, and transitions purely used for control flow
purpose. More refined control flow can be expressed using arc inscriptions and
transition guard expressions.

Table 1 (R5 – (1)) shows a more complex interaction, called XOR-decision. (the
<if>/<pick> section in the BPEL4WS specification) so that only one communicative
act can be sent. In this case, each type of message is associated to a transition with a
function on its input arc. The function plays the role of a filter, i.e. it control the firing
of the transition corresponding to the message type. Table 1 (R5 – (2)) shows another
complex interaction, the OR-parallel interaction (the <switch> section), in which the
sender can send zero, one or more communicative acts (inclusively) to the designated
recipients simulating an inclusive-or.

The last type of complex message is the AND-parallel (the <follow> section) which
models concurrency messages sending. This type of complex interaction is
represented by means of parallel case or multi-threading in CPN.

R6: Iteration: An iteration in a part of IP specification is represented by an arrow and
a guard expression or an end condition (the <while> section in BPEL4WS). In CPN,
an iteration is specified in the same way except that the end condition is a guard
expression associated with the transition that starts the iteration.

84 D. Benmerzoug, F. Kordon, and M. Boufaida

Table 1. A Translation Rules From IP to CPN

AUML elements BPEL4WS elements CPN elements

R1: Roles/Web
services

<process>
<partners>

<partner name="p1"/>
<partner name="P2"/>

</partners>

 p1 p2

R2: Role life line

R3: message
exchange
(asynchronous
messages)

<sequence>
<receive name="msg"

partner="p2"
………….

</receive>

R4: primitive
message exchange
(synchronous
messages)

<invoke name="p2"
partner="P2"
inputVariable="Request"
outputVariable= "Result">
…………

</invoke>

R5 (1): complex
message exchange
(the XOR-
Decision)

<if condition= “Bool-Exp”>
<reply name=”msg1”>
………….
</reply>
<reply name=”msg2”>
………….
</reply>

</if>

R5(2): complex
message exchange
(the OR-Decision)

<switch standard-attributes>
<case condition1>

<reply name=”msg1”>
………….
</reply>

</case>
<case condition2>
<reply name=”msg2”>
………….
</reply>
</case>
<otherwise>
………….
</otherwise>

</switch>
R5(3): complex
message exchange
(the AND-
Decisiosn)

<flow>
<reply name=”msg1”>
………….
</reply>
<reply name=”msg2”>
………….
</reply>
</flow>

R6: Iteration <while condition= “Bool-
Exp”>
<receive name="msg"

partner="p2"
………….

</while>

msg

msg

msg1

msg2

msg1

msg2

msg1

msg2

p1 P2

Send
msg

msg

Receive
msg

[msg] [msg]

Send
msg

Receive
msg

Send Ackn-
owledgment Receive

Acknowledgment

[msg] [msg]

[msg1,msg2]

[msg1]

[Condition1=true]

else
Receive

msg2 Receive
msg1

[msg2]

[msg1]

[Condition2=true]

[msg2]

Send
msg1

Send
msg2

Receive
msg2

Receive
msg1

Color domain
={msg1,msg2}

[msg1,msg2] [msg1]

[msg2][msg1]

[msg2]

[msg1]

msg2]

Send
msg1

Send
msg2

[msg1] [msg1]

[msg2]
[msg2]

[X]
Receive

msg

[Condition]

[msg]

[msg]

[False]

[True]

 A Petri-Net Based Formalisation of Interaction Protocols 85

Table 1. (continued)

R7: Case of
termination

msg.CA {failure, cancel,,
Refuse, not-understood }

ABORT is a final state (end of Interaction
with Failure)

Receive
msg

Send
msg

msg

ABORT

R7: Case of termination: In the specification of the FIPA-ContractNetProtocol besides
the AUML diagram other requirements are described in the text [13]: The sending of
not-understood messages and the so called FIPA-Cancel-Metaprotocol: Every received
message is responded to by a not-understood, if the comprehension of the message
failed. In this case, the protocol is cancelled for the corresponding participant. In a CPN,
this is realized by adding a transition to the final state ABORT (except the initial state).
This transition corresponds to the reception of acts: Failure, Cancel, Refuse or not-
understood, which can terminate the IP with failure.

3.2 An Algorithm for Transforming an IP to Its CPN Representation

Previous investigations have explored various machine-readable Petri net
representations. However, interaction protocols are typically specified in human-
readable form (e.g., in AUML [13]). The question of how to automatically translate
an interaction protocol specification into a machine-readable form has been
previously ignored [16]. We present an automated procedure for transforming an IP to
its CPN representation.

The algorithm is presented in figure 2. It inputs an IP as defined in section 3, and it
outputs a corresponding CPN representation. The CPN is constructed by iterating:
The algorithm essentially creates the IP-net by exploring the interaction protocol.
Lines 1 and 2 initiate different variables used in this algorithm and respectively the
CPN output. The roles places, denoted by the variable RP, hold the initiating places
for the Petri net. These places correspond to the roles of the IP (line 3, 4 and 5). Each
one of these places is labelled with the corresponding role name.

We enter the main loop in line 7 and set curr to the first message in the IP. Lines
8-16 create the CPN components of the current iteration. First, in line 8, message
places, associated with curr role place, are created using CreateMessagePlace.

These places correspond to communicative acts. Then, in line 9, we create
intermediate places that correspond to interaction state changes as a result of these
messages associated with curr place. Then, in CreateTransitions and CreateArcs,
these places are connected through transitions and arcs, using the CPN building
blocks previously described (section 3). Finally, we add token elements colour to the
CPN structure, implementing attributes using the FixColor function (line 16).

To complete the iteration, the CPN output, is updated according to the current
iteration in lines 17-19. The loop iterates as long as M contains messages that have
not been handled. Finally, the resulting CPN is returned (line 21).

86 D. Benmerzoug, F. Kordon, and M. Boufaida

Algorithm CreateIP-net (input : IP=<ID, R, M, M>, output : CPN)

1: RP Ø // Roles places
 MP Ø // Messages places
 IM Ø // Intermediate places
 TR Ø // list of transitions
 AR Ø // list of arcs
2: CPN new CPN
3: For every r R do
4. RP createRolePlace() // there would be one token in every RP place
5: CPN.places RP
6: While M Ø do
7: curr M.dequeue()
8: MP CreateMessagePlace(curr)
9: IM CreateIntermediatePlace(curr,MP)
10: TR CreateTransitions(curr,MP,IM)

11: If curr.CA {Failure, Cancel, Refuse, not-understood}
12: AR CreateArcs(curr,MP,IM,TR)
13: Else // MP is a terminating place
14: AR CreateArcs(curr, IM,TR)
15: End If

16: FixColor(MP,TR,AR,curr.CA)

17: CPN.places CPN.places MP IM
18: CPN.transitions CPN.transitions TR
19: CPN.arcs CPN.arcs AR
20: End while
21: Return CPN

Fig. 2. IP to CPN Conversion Procedure

4 A Case Study: The Agent-Based Transportation e-Market
System

To illustrate this algorithm, we use it to construct a CPN of a part of our example
presented in [7] (shown as IP in figure 3). This example illustrates the interaction
among three parts: Customer, Broker and IRevise, where the two first parts are
Interfaces of different business systems, and the last part is an automatic service. In
this protocol, the process starts when the Customer role sends a message with
business information: request(ItineraryData). Once the Broker receives these
messages, the Web service IRevise is invoked for reviewing the customer itinerary
and divide this itinerary into sub-itineraries.

We note that all the private processes are not defined by the interaction protocol
because they are private aspects of the Broker. After dividing the itinerary, the Broker
decides whether to send a message propose(ItineraryPlan) to the Customer or
refuse the customer request because it cannot be satisfied. This is defined with a logical
connector XOR, which represents that only one of the two alternative messages can be

 A Petri-Net Based Formalisation of Interaction Protocols 87

<process>
<partners>
<partner name="Customer"/>
<partner name="Broker"/>
<partner name="IRevise"/>
</partners>
<variables>
<variable name="request"/>
<variable name="response"/>
……………
</variables>
<sequence>
<receive name="request"

partner="Broker"
………….

</receive>
<invoke name="ItineraryDividing"

partner="Broker"
inputVariable="Request"
outputVariable= "Result">

</invoke>
<reply name="Result"

partner="IRevise"
………….

</reply>
<switch>

<reply name=”failure”>
………….

</reply>
<reply name=”propose”>

………….
</reply>

</switch>
<switch>

<reply name=”failure”>
………….

</reply>
<reply name=”inform”>

………….
</reply>

</switch>
</sequence>
</process>

Failure

Customer

Request

Broker IRevise

Propose

Failure

Inform

Request

Result

The Role/
atner SectioPr n

Context Broker::request(C:Customer, ID: ItineraryData)
pre: C.oclInState(Registered) and ID.notEmpty
post: C.RequestItinerary->size()= C.RequestItinerary ->

size()@pre+1

a- the AUML Interaction Protocol b- the BPEL4WS of (a)

The XOR
Decision

Synchronous
ssage ExchangMe e

Asynchronous
Message
Exchange

Fig. 3. An Interaction Protocol as AUML/BPEL4WS

sent. In this case, the Customer has two interaction threads that represent the incoming
messages. When the Customer receives a message propose(ItineraryPlan), he can
accept this itinerary plan or can declare a failure during the negotiation because
consensus has not been achieved.

We now use the algorithm introduced above (fig. 2) to create a CPN for this IP.
The algorithm begins with the creation of three Roles Places (RP) initially marked
(one place for every role/partner in the IP: lines 3 and 4). Line 5 permits to update the
CPN with the RP variable. In the first iteration of the main loop (line 7), the curr
variable is set to the first message in the IP (curr <”Customer”, “Broker”, “request”,
“S”>). The algorithm creates net places, which are associated with the curr variable,
i.e. a request message place (line 8) and two places in the Customer and respectively
the Broker sub-nets (the CreateIntermediatePlace() function at line 9).

These three places (see the resulting CPN in Figure 4) are connected using the
asynchronous message building block shown in Table 1. The MP is not a terminating
place (the Customer is waiting for a response from the Broker) and is thus connected
through transitions and arcs with the CreateTransitions() and CreateArcs()
functions (lines 10, 11, 12). Next, the colour sets of the corresponding places are
determined (colour domains of the transitions are generally defined according to the
domains of the results of functions evaluation of input arcs).

88 D. Benmerzoug, F. Kordon, and M. Boufaida

Send
Result

Receive
Failure

ABORT

If msg.ca=”Inform”
"Send Inform"

Wait for
response

Receive
sultRe

Send
Request

Send
Request

Customer Broker IReviseThe Role/Partn
Section

er

R
Re

eceive
questAsynchronous

Message
Section [msg] [msg]

Receive
Request

Colour domain ={Failure,
Propose}

Colour domain = {Failure,
Inform}

If msg.ca=”Failure”
"Send failure"

ABORT (end of IP
with failure)

Send
Failure

The XOR
Decision Section

Send
Propose

Receive
Failure Receive

Propose

Synchronous
Message
Section

[msg1]

Receive
Inform

[msg1]

[msg2]

[msg2]

Fig. 4. The Resulting CPN of the IP presented in Fig. 3

In the second iteration, curr is set to <” Broker”, “Customer”, “failure”, “A”>⊕
<” Broker”, “Customer”, “propose”, “A”>. In this case, the Broker can send either a
failure or a propose messages, and thus appropriate message places are created using
the XOR-decision building block shown in Table 1. Then, two places, corresponding
to the results of the messages are created. These places are connected using the XOR-
decision described in Table 1. This building block involves the creation of the guard
conditions on the transitions controlling the firing of the transition corresponding to
the message type (which is represented as a colour in the Petri net).

In this iteration, we note that the MP place corresponding to the message “failure”
is a terminating place, so no outgoing transitions or arcs are creating from this place.
The loop iterates as long as M contains messages that have not been handled. Finally,
the resulting CPN is returned (Figure 4).

5 Validation and Property Verification

CPN allow us to validate and evaluate the usability of a system by performing
automatic and/or guided executions. These simulation techniques can also carry out
performance analysis by calculating transaction throughputs, etc. Moreover, by
applying other analysis techniques it is possible to verify static and dynamic
properties in order to provide the complement to the simulation. Some of these
properties are that:

− There are no activities in the system that cannot be realized (dead transitions). If
initially dead transitions exist, then the system was bad designed.

− The IP specification exhibits the liveness property (e.g., the output CPN guarantees
the existence of an initial state such that for any accessible state, at least one
operation is executed).

 A Petri-Net Based Formalisation of Interaction Protocols 89

− It is always possible to return to a previous state (home properties). For instance, to
compare the results of applying different decisions from the same state. (the case of
XOR and OR decision)

− The system may stop before completion (deadlock). Thus, a work might never be
finished, or it might be necessary to allocate more resources to perform it.

− Certain tokens are never destroyed (conservation). Hence, resources are maintained
in the system.

6 Enabling Integration Process with Multi-Agent Systems

As we already have said, the BPEL4WS process specification is considered as a
language for specifying the interaction protocol of multi-agents system. In this section
we briefly describe how the MAS use the verified and validated BPEL4WS
specification to establish the BPI. Our suggestion consists in the addition of a specific
agent between the MAS application and its IP parts conceived as Web services (see
figure 5). The main advantage of this approach is the integration completeness
property inherent from our BPEL4WS specification. Integration completeness means
that the IP is itself published and accessed as a Web service that can participate in
other application integration. Since applications integration is often viewed as a
hierarchy of different local systems and services, the integration completeness
property permits the agent-based integration to be included via BPEL4WS into other
applications integration definitions.

Result

IP as
BPEL4WS

The Integrator Agent

Knowledge base
(Interactions

traces, services
composition ...)

Communication Bus

……………..

……………..

 Company 1 Company 2 Company n

Agent
n

Agent
2

Agent
1

Services
Publish/Find

Services Manager

Interaction
Manager

Interaction
Controller

Interaction
Builder

UDDI

Result

Request

Web Services of
the application

Fig. 5. Global Structure of our Architecture

90 D. Benmerzoug, F. Kordon, and M. Boufaida

As shown in Figure 5, the BPEL4WS specification is exploited thereafter with an
intermediate agent called «Integrator Agent ». This integration must keep as much as
possible the autonomy of architecture core based on agents. Indeed, The agents are
coordinated with the Integrator agent and the exchange of messages to enact the BPI.
In this architecture, the following communication pathways exist:

− agent to agent communication occurs via FIPA ACL and is facilitate by a FIPA
compliant Agent Management System.

− agent to Web service communication is accomplished via SOAP messages.
− agent to BPEL4WS dataspace communication uses appropriate protocols/interfaces

provided by the dataspace. The dataspace is used to store BPEL4WS process
variables, which maintain the state of the IP.

The main roles of the Integrator agent are the creation, monitoring, and control of
IP life cycle. It’s architecture features two modules: an interaction manager and a
service manager. The interaction manager contains operational knowledge (e.g.,
Interactions states). It also provides operations for monitoring interactions (i.e.,
creating and deleting instances). The service manager provides methods for receiving
service requests, tracing service executions, and communicating with service
requesters in accordance with IP definition (e.g., sending a notification informing the
requester that deadline for cancelling an operation is passed).

7 Related Work

BPI and automation is an active research domain. The community is still debating the
issues of enterprises collaboration at the business process level.

In [17], P. Buhler et al. summarize the relationship between agents and Web
services with the aphorism “Adaptive Workflow Engines = Web Services + Agents”:
namely, Web services provide the computational resources and agents provide the
coordination framework. They propose the use of the BPEL4WS language as a
specification language for expressing the initial social order of the multi-agent
system. P. Buhler et al. does not provide any design issues to ensure the correctness of
their interaction protocols.

In [21], authors propose translating rules for the conversation of an interaction
protocol given in AUML to CPN. Unfortunately, no procedures were provided that
guide the conversion of an interaction protocol given in AUML to Petri net
representations.

The Symphony project [18] has developed an algorithm for analyzing a composite
service specification for data and control dependences and partitioning it into a set of
smaller components. These components are then distributed to different locations and,
when deployed, cooperatively deliver the same semantics as the original workflow.
Symphony does not provide any support for failures arising from workflow
mismatches since it assumes that the distributed processes will be derived from a
single complete BPEL process.

Several other approaches aim to solve the integration problem by emphasizing
interaction protocols. The state transition diagram (STD) has been extensively used
for IP specification due to its clarity. The weakness is that it does not reflect the

 A Petri-Net Based Formalisation of Interaction Protocols 91

asynchronous character of the underlying communication [19]. Furthermore, it is not
easy to represent integration of protocols. The Dooley Graph [20] is an alternative
formalism for visualizing agent inter-relationships within a conversation. Object-
oriented methods like UML [22] offer a way to reduce the gap between users and
analyst when considering message transfers, yet they only address the dynamic
behavior of individual objects and are informal.

Compared with the related work, our approach allows us to provide a clear
separation of inter-enterprise collaboration management and local business process
management, to make full use of existing workflow system components, to support
both public processes and private business processes. Another advantage of our
approach is the integration completeness property inherent from our BPEL4WS
specification. It means that the IP is itself published and accessed as a Web service
that can participate in other application integration. Since applications integration is
often viewed as a hierarchy of different local systems and services, the integration
completeness property allows agent-based integration to be incorporated via
BPEL4WS into other applications integration definitions.

8 Conclusion and Future Work

In this paper, we presented a generic approach for BPI based on interaction protocols.
The proposed translation rules from AUML/BPEL4WS notations to Coloured Petri nets
enable the use of many verification techniques during the design phase to detect errors
as early as possible.

Such translation allows to easily model complex e-business applications. We also
proposed an automated procedure for converting an interaction protocol specification
to a corresponding coloured Petri nets and illustrated its use through a case study.

The verified and validated interaction protocols specification is exploited afterwards
with an intermediate agent called Integrator Agent to enact the integration process and
to manage it efficiently in all steps of composition and monitoring.

Our primary future work direction is the exploitation of the BPEL4WS specified
BPI by the Integrator agent to facilitate the creation, monitoring, and control of
interaction life cycle at run-time. We will also introduce the notion of intelligence; we
will try to specify all the cooperative agents of our architecture as intelligent and
autonomous Web components.

References

1. Papazoglou, M.P., Kratz, B.: Web Services Technology in Support of Business
Transactions. Int. journal of Service Oriented Computing 1(1), 51–63 (2007)

2. Jung, J.Y., Kang, S.H.: Business Process Choreography for B2B Collaboration. IEEE
Internet Computing, 37–45 (2004)

3. Aissi, S., Malu, P., Srinivasan, K.: E-business process modeling: the next big step. IEEE
Computer, 55–62 (2002)

4. Luck, M., McBurney, P., Shehory, O., Willmott, S.: The AgentLink Community: Agent
Technology: Computing as Interaction - A Roadmap for Agent-Based Computing.
AgentLink III (2005)

92 D. Benmerzoug, F. Kordon, and M. Boufaida

5. Benmerzoug, D., Boufaida, M., Kordon, F.: A Specification and Validation Approach for
Business Process Integration Based on Web Services and Agents. In: Int. Workshop on
Modeling, Simulation, Verification and Validation of Enterprises Information Systems
(MSVVEIS 2007), pp. 163–168. INSTICC press (2007)

6. Benmerzoug, D., Boufaida, Z., Boufaida, M.: From the Analysis of Cooperation Within
Organizational Environments to the Design of Cooperative Information Systems: An
Agent-Based Approach. In: Meersman, R., et al. (eds.) OTM Workshops 2004. LNCS, pp.
496–506. Springer, Heidelberg (2004)

7. Benmerzoug, D., Boufaida, M., Boufaida, Z.: Developing Cooperative Information Agent-
Based Systems with the AMCIS Methodology. In: IEEE International Conference on
Advances in Intelligent Systems: Theories and Application, Luxembourg (2004)

8. Cost, R., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Using Colored Petri nets for
Conversation Modeling. In: Dignum, F., Greaves, M. (eds.) Issues in Agent
Communication. LNCS (LNAI), vol. 1916, pp. 178–192. Springer, Heidelberg (2000)

9. Girault, C., Valk, R.: Petri Nets for Systems Engineering - A Guide to Modeling,
Verification, and Applications. Springer, Heidelberg (2003)

10. Koehler, J., Tirenni, G., Kumaran, S.: From Business Process Model to Consistent
Implementation: A Case for Formal Verification Methods. In: Pro. of the Sixth
International Enterprise Distributed Object Computing Conference, IEEE Computer
Society, Los Alamitos (2002)

11. Peregrine B2B Integration Platform, http://www.peregrine.com
12. Thatte, S.: XLANG: Web Services for Business Process Design, Microsoft Corp., cf

(2001), http://www.gotdotnet.com/team/xml_wsspecs/
13. Huget, M., Odell, J.: Representing agent interaction protocols with agent UML. In: 3rd

International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1244–
1245. IEEE Computer Society, Los Alamitos (2004)

14. Business Process Execution Language for Web Services Version 1.1 (2003), http://
www-106.ibm.com/developerworks/

15. Sun Microsystems. Java Web Services Development Pack 1.1 (2006), http://java.
sun.com/webservices/webservicespack.html/

16. Gutnik, G., Kaminka, G.A.: A Scalable Petri Net Representation of Interaction Protocols
for Overhearing. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AAMAS 2004. LNCS
(LNAI), vol. 3394, pp. 1246–1247. Springer, Heidelberg (2005)

17. Buhler, P.A., Vidal, J.M.: Towards adaptive workflow enactment using multiagent
systems. Int. Jour. On Information Technology and Management, 61–87 (2005)

18. Chafle, G., Chandra, S., Mann, V., Nanda, M.: Decentralized Orchestration of Composite
Web Services. In: Proc. of the Alternate Track on Web Services at the 13th International
World Wide Web Conference (WWW 2004), pp. 134–143 (2004)

19. Martial, F.: Coordinating Plans of Autonomous Agents. LNCS (LNAI), vol. 610. Springer,
Heidelberg (1992)

20. Parunak, H.V.D.: Visualizing Agent Conversations: Using Enhanced Dooley Graphs for
Agent Design and Analysis. In: Proceedings of the International Conference on Multi-
Agent Systems (1996)

21. Mazouzi, H., Fallah-Seghrouchni, A.E., Haddad, S.: Open Protocol Design for Complex
Interactions in Multi-Agent Systems. In: Proceedings of AAMAS 2002, pp. 517–526 (2002)

22. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language for object-oriented
development. Document set version 1.0, Rational Software Corporation, Santa Clara (1997)

23. OMG; Object Constraint Language Specification, http://www.omg.org/cgi-bin/
doc?formal/03-03-13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

