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Abstract. We encountered some limits when using the GreatSPN model checker
on life-size models, both in time and space complexity. Even when the exponen-
tial blow-up of state space size is adequately handled by the tool thanks to the use
of a canonization function that allows to exploit system symmetries, time com-
plexity becomes critical. Indeed the canonization procedure is computationally
expensive, and verification time for a single property may exceed 2 days (without
exhausting memory).

Using the GreatSPN model-checking core, we have built a distributed model-
checker, dmcG, to benefit from the aggregated resources of a cluster. We built
this distributed version using a flexible software architecture dedicated to parallel
and distributed model-checking, thus allowing full reuse of GreatSPN source
code at a low development cost. We report performances on several specifications
that show we reach the theoretical linear speedup w.r.t. the number of nodes.
Furthermore, through intensive use of multi-threading, performances on multi-
processors architectures reach a speedup linear to the number of processors.
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1 Introduction

If we want model checking to cope with industrial-size specifications, it is necessary to
be able to handle large state spaces. Several techniques do help:

i compact encoding of a state space using decision diagrams; these techniques are
called symbolic' model checking [3,1],

ii equivalence relation based representation of states that group numerous concrete
states of a system into a symbolic state [2]; these techniques are also called symbo-
lic,

iii executing the model checker on a distributed architecture [4,5,6,7,8].

! The word symbolic is associated with two different techniques. The first one is based on state

space encoding and was introduced in [1]. The second one relies on set-based representations
of states having similar structures and was introduced in [2].



These three techniques can be stacked. This was experimented for (i) and (ii) in [9].

GreatSPN [10] is a well known tool implementing technique (ii) in its model che-
cking kernel thanks to the use of Symmetric Nets > for input specifications. We have
successfully used it for many studies requiring to analyse complex systems with more
than 10'® concrete states and an exponential gain between the concrete reachability
graph and the symbolic reachability graph [11].

However, these studies and another one dedicated to intelligent transport systems
[12] revealed two problems. First, generation of the symbolic reachability graph re-
quires a canonical representation of states to detect already existing ones. This is a
known problem that requires CPU time. So, even if memory consumption is reduced,
CPU load becomes a problem.

The second problem deals with an implementation constant that prevented us to
handle more than 12 million symbolic states in the version we had (in the first study we
mentioned, this was the equivalent to 10'® concrete states).

So, to handle larger systems, the idea is to use the aggregated resources of a cluster
and thus, merge techniques (ii) and (iii) by implementing a distributed model checker
for Symmetric Nets able to generate faster larger state spaces.

This paper presents how we built dmcG, a distributed model checker based on the
GreatSPN model-checking core. We did not change the GreatSPN sources files. They
were encapsulated in a higher-level program called libdmc [13]. This library is dedicated
to parallelization and distribution of model checkers and orchestrates services provided
by GreatSPN to enable a distributed execution.

The paper is organized as follow. After a survey of related works in Section 2,
Section 3 explains how we built dmcG atop libdmc using GreatSPN. Then, Section 4
presents performances of dmcG and discusses about them.

2 Related Work

Several attempts at proposing a distributed model-checker have been made. In [6] the
authors implemented a distributed version of Spin. The problem however, was that the
main state space reduction technique of Spin, called partial order reduction, had to
be re-implemented in a manner that degrades its effectiveness as the number of hosts
collaborating increases. Thus performances, reported up to 4 hosts in the original paper,
were reported to actually not scale well on a cluster (see Nasa’s case study in [14]).
Another effort to implement a distributed Spin is DivSpin [4]. However, they chose to
re-implement a Promela engine rather than using Spin’s source code. As a result their
sequential version is at least twice as slow as sequential Spin in it’s most degraded
setting with optimizations deactivated. And any further improvements of the Spin tool
will not profit their implementation.

An effort that has met better success is reported in [5] for a distributed version of the
Murphi verifier from Stanford. Murphi exhibits a costly canonization procedure. The
original implementation in [5] was built on top of specific Berkeley NOW hardware?,

2 Formerly known as Well-Formed Nets [2], a class of High-level Petri Nets
3 The Berkeley Network of Workstations



which limits its portability. A more recent implementation [7] is based on MPI [15],
however it is limited to two threads per hosts, one handling the network and one for
computation of the next state function. Our work is however comparable to that effort
in terms of design goals: reuse of existing code over a network of multi-processor ma-
chines, a popular architecture due to its good performance/cost ratio. The good results
reported by these Murphi-based tools with slightly sublinear speedup over the number
of hosts encourage further experimentation in this direction.

We can also cite [8] which is an effort to distribute the generation of (but theoreti-
cally not limited to) LOTOS specifications. They report near linear speedups.

3 Building dmcG

Our strategy is to build a model checker based on the GreatSPN core, thus reusing its
implementation of the symbolic reachability graph. So, we let GreatSPN compute suc-
cessors but its execution is handled by the libdmc library. This one distributes the state
space over the nodes of a cluster and manages all the networking and multi-threaded
aspects of the state space generation.

To distribute memory load, we assign an owner node to each state, responsible for
storing it. We use a static localization function that, for each state, designates a host.
Note that this function should have a homogeneous distribution to ensure load balanc-
ing: we chose MDS5 as it is known to provide a good distribution for any kind of input.

To distribute CPU load, each node has an active component that computes succes-
sors. This is the computationally most expensive task in the model-checking procedure,
particularly because of the canonization algorithms of GreatSPN.

3.1 Architecture of dmcG

GreatSPN successors computation

FiringManager »| NewStatesSet

Multiple threads pop_state()

gprocess_state() push_state()j
Distributed local state _ StateManager

StateManager process_state() Unicity table
state owned by a distant host process_state()
process_state() state incoming from a distant host
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distribution management

Fig. 1. dmcG architecture



dmcG is designed using a component based approach. Each node instantiates the
components shown on figure 1:

1. The StateManager is a passive storage component instanciated once per node, that
stores the states owned by the node. The behavior of processState is to determine
whether a state is new or not. If a state is new, it is stored in an unicity table and
also pushed into the NewStatesSet, otherwise, it is discarded.

2. The NewStatesSet is a protected passive state container, used to store states that
have not been fully explored. Each node has a single occurrence of this component,
shared by the active computing threads.

3. The FiringManager represents an active thread used to compute successors by call-
ing GreatSPN successors functions. Several instances of this component are instan-
ciated on each node to allow full use of multi-processor machines, and to overlap
network latency. As shown in figure 1, each FiringManager instance repeatedly
pops a state from the NewStatesSet, computes its successors and passes them to the
DistributedStateManager. One privileged FiringManager initiates the computation
by processing the initial state(s) on a master node.

4. The DistributedStateManager is responsible for forwarding the states to their ow-
ner, using the localization function. This component deals with a set of StateMana-
ger Proxies representing distant StateManager (proxy design pattern [16]). When
a state is not owned by the node which computed it, it is transmitted to its owner
through its proxy/service pair. Each node instantiates one DistributedStateManager
component for localization purposes, one proxy per distant node, and one service
to receive incoming states computed on other nodes.

3.2 Interaction with GreatSPN

The first step was to identify the core functions of GreatSPN which compute successors
of a state. This work was made easier thanks to a previous similar effort aimed at in-
tegrating LTL model-checking capacity in GreatSPN, using the Spot library [17]. The
interface we defined corresponds to a labeled automata: we extracted functions to ob-
tain the initial state, and a successor function returning the set of successors of a given
state (using an iterator). An additional labeling function was extracted to allow labeling
of states satisfying a given criterion (deadlock state, state verifying some arbitrary state
property...).

This simple interface is defined to minimize dependencies from libdmc to a given
formalism. We did not redevelop any algorithms for successor generation in libdmc: this
is essential to allow the reuse of existing efficient implementations of state space gen-
erators, and their usually quite complex data representation. The (existing) algorithms
related to state representation algorithms are cleanly separated from the distribution re-
lated algorithms. The use of a canonization function by GreatSPN is thus transparent
for libdmc. It manipulates compact state representations, in which each "symbolic state"
actually represents an equivalence class of states of the concrete reachability graph.

The states are handled in an opaque manner by libdmc : they are seen as a simple
block of contiguous memory, at interaction points between model-checking engine and
libdmc, thus reducing dependencies between the model-checker and libdmc. This choice



of retaining a raw binary encoding of states allows a low overhead of the library, but
forces to operate over a homogeneous hardware configuration so that all nodes have
a common interpretation of the state data. In any case, a layer integrating machine
independent state encodings (i.e. XDR) could be added, but has not been implemented.

libdmc is intensely multi-threaded to allow the better use of modern hardware archi-
tectures, thus posing some problems when integrating legacy C code such as GreatSPN.
GreatSPN is inherently non-reentrant, due to numerous global variables. The solution
adopted consists in compiling the tool as a shared library that can be loaded and dy-
namically linked into. Simply copying the resulting shared object file in different file
locations allows to load it several times into different memory spaces. This is necessary
as threads usually share memory space. Each successor computation thread is assigned
a separate copy of the GreatSPN binary.

We should emphasize the fact that a complete rewriting of GreatSPN was not possi-
ble since it is made of complex algorithms stacked in an architecture that has more than
ten years of existence. Furthermore It wouldn’t have validated the fact that the libdmc
can interact with legacy code.

3.3 Verification of safety properties

The verification of safety or reachability properties is an important task since many
aspects of modeled systems can be checked by such properties, and it is a necessary
basis to handle more complex temporal logics. Finding reachable states that verify or
not a property is an easy task once the state space is generated. Each node simply
examines the states it has stored. This provides a yes/no answer to reachability queries.
However, to let users determine how errors happened in their specifications, we need to
provide a witness trace (or ’counter-example’) leading to the target state. We provide a
minimal counter-example in order to simplify the debuging task for the designer.

During the construction of the reachable state set, arcs are not stored however. And
unfortunately, no predecessor function is available in the GreatSPN core. The approach
used is to store during the construction in each state its distance to the initial state along
the shortest path possible. Due to nondeterminism, the first path found to a given state
is not necessarily the shortest, thus the distance may be updated if a state is reached
later by a shorter path. In such a case, we have to recompute successors of the state to
update their own distance, etc. . . Since this scheme can be costly, to avoid its occurrence
as much as possible, states are popped from each node’s NewStatesSet in ascending
distance. This scheme does not introduce additional synchronization among nodes, and
helps to maintain an overall approximative BFS state exploration.

After the generation of the whole state space, we build an index on each node that
orders states by depth. It’s not a CPU intensive task since we only need to iterate once
on the state space (it only takes a few seconds). The drawback is that the size of this
index increases with state space depth.

Once this index is built a master node controls the construction of the counter-
example which leads to a state s in error at a distance n. The master asks to each slave
a predecessor of s at a distance n — 1. Slaves compute this predecessor by iterating over
all states at depth n — 1, using the index. The first state whose successor is s is sent to the
master and the iteration is stopped. Then the master stores the first received predecessor



in the counter-example. This operation is performed until the initial state has been found
as predecessor. We then have a minimal counter-example.

4 Experimentations

Performances results have been measured on a cluster of 22 dual Xeons hyper-threaded
at 2.8GHz, with 2GB of RAM and interconnected with Gigabit ethernet. We focused
our evaluations on two parameters: states distribution and obtained speedups.

The following parametric specifications have been selected:

— the Dining Philosophers, a well known academic example; it is parameterized with
the number of philosophers.

— a Client-Server specification with asynchronous send of messages and acknowle-
dgments; it is parameterized with the number of clients and servers.

— the model of the PolyORB middleware kernel [11]; it is parameterized with the
number of threads in the middleware. Let us note that the analysis of this model
could not be achieved for more than 17 threads in sequential generation (it took
more than 40 hours).

4.1 State distribution

A homogeneous distribution of the states over the hosts in the cluster is an important
issue since it is related to load balancing of dmcG. The goal is to avoid the situation
were some hosts are overloaded while others are idle. This is required to reach a linear
speedup.

Therefore, we measured the number of states owned by each host, in order to val-
idate the choice of MD5 as a localization function. We then compared these results to
the theoretical mean value and noted the variation. These measures are summarized
in Table 1. In this table, column 1 represents the parameter that scales up the model,
column 2 the number of involved hosts, column 3 the total number of symbolic states,
column 4 the theoretical mean value, column 5 the standard deviation and column 6 the
standard deviation expressed in percentage of the mean value.

We obtain standard deviations that are from less than 0.1% to less than 5% of the
mean values. Such results are obtained for every model we analyzed in any configura-
tion (model parameters and number of nodes). So our expectations are met since the
state space is evenly distributed over the whole cluster. However, we observe that, as a
possible side effect of the MD5 checksum, it is preferable to have a number of nodes
that is a power of 2, in which case the standard deviation is smaller than 1% of the mean
value. Additional experiments showed that the usage of a more complex checksum like
SHA-1 doesn’t seem to improve or to decrease the quality of the states distribution.

4.2 Speedups

Figures 2, 3 and 4 show the compared time of sequential and distributed generation
needed for the three specifications we analyzed. They also show the speedups we obtain



Parameter [Hosts[Symb. States| Mean |Std. deviation|Percentage
Dining Philosophers
12 philosophers| 4 347 337 86 834 427 0.5%
15 philosophers| 4 | 12545925 |3 136 481 792 <0.1%
12 philosophers| 22 347 337 15788 689 4.4%
15 philosophers| 22 | 12 545925 | 570 269 24179 4.2%
Client-Server
100 processes | 4 176 851 44213 202 0.5%
400 processes | 4 | 10827401 |2 706 850 1327 <0.1%
100 processes | 20 176 851 8 843 316 3.57%
400 processes | 20 | 10 827401 | 541 370 17 438 3.22%
PolyORB middleware
11 threads 16 | 3366471 | 210404 402 0.2%
17 threads 16 | 12055899 | 753 494 1131 0.2%
11 threads 20 | 3366471 | 168 324 5393 3.2%
17 threads 20 | 12055899 | 602 795 19 557 3.2%
25 threads 20 | 37623267 |1881163| 60540 3.7%

Table 1. States distribution for the Philosophers, Client-Server and PolyORB specifica-
tions

for the distributed generation of these models. Speedups are compared to the runtime
of the standard GreatSPN tool running the same example.

dmcG has a low overhead: execution for the mono-threaded, single host version of
dmcG takes within 95% to 105% of the time needed by the standard GreatSPN version
(these variations are due to implementation details concerning the storage of states).
The local but multi-threaded version is truly twice as fast on a dual-processor machine.
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Fig. 2. Generation time (left) and speedups (right) for the Dining Philosophers specifi-

cation

The main observation is that, in many cases, the observed speedup is over the the-
oretical one based on the number of processors (two per host): we have a supra-linear
acceleration factor, up to 50 with 20 bi-processors nodes (fig. 3). We observed this in
near all our experiments on several models with various parameters. We attribute this to
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180000 45 T T r .
dmcG with 20 bi GrealSdPN Theoretical speedup

L mcG wi i-processorg'nodes === Speedr -

e aor 11 threads

17 threads

140000 -

120000 -

100000 -

Time (s)

80000

Speedup

60000

40000

20000 |

o o
5 10 15 20 25 2 4 6 8 10 12 14 16 18 20
Number of modeled threads Hosts (dual-processors)

Fig. 4. Generation time (left) and speedups (right) for the PolyORB specification

hyper-threading since the supra-linear acceleration factor was not observed on classic
dual processors (without hyper-threading). This hypothesis is confirmed by [18].

The stall observed in figure 3 for the Client-Server specification parameterized with
100 processes is simply due to the fact that the execution time is very small (<5s): the
specification becomes too simple to compute for a number of nodes superior to 16.

4.3 Other considerations

Another measure of interest is the network bandwidth consumption: measured band-
widths per node are from 230 KB/s for the PolyORB specification to 1.5 MB/s for the
Client-Server specification, in a configuration with 20 nodes. That means that we do
not use more than 30 MB/s of total bandwidth in this configuration, which any modern
switch should handle easily.

We also observe that the larger the state space, the more efficient dmcG is. We
impute this to the fact that there are more chances for a state to have at least a successor
that is then distributed to another host, leading the NewStatesSet of each node to never
be empty during the computation (which would make idle hosts).

Finally, a preliminary campaign on a larger cluster with 128 dual-processors nodes
shows that dmcG scales up very well: we continue to observe a growing linear speedup
with large models, as well as a homogeneous distribution.



5 Conclusion

In this paper, we presented dmcG, a distributed model checker working on a symbolic
state space. The goal is to stack two accelerating techniques for model checking in order
to get a more powerful tool. As a basis for the core functions of this distributed model
checker, we used GreatSPN implementation without changing it. It was connected to a
library dedicated to the distribution of model checking: libdmc.

Performances on several models, including industrial-like case study (the verifica-
tion of a middleware’s core) are almost optimal. We observe a nearly linear speedup
with, in some favorable cases, a supra-linear speedup (due to the intensive use of both
distribution and multi-threading). Using dmcG, we can push memory and CPU capacity
of our model-checker one to two orders of magnitude further.

So far, our model checker basically manages safety properties and, when a property
is not verified, provides an execution path to the faulty state. It takes as input AMI-nets
or native GreatSPN format models, with additional parameters to specify properties.
The multi-node version still requires some skill to install and configure, but we plan to
make it available soon. The multi-threaded single node version is immediately useful to
owners of a bi-processor machine.

We are currently challenging libdmc to handle the verification of temporal logic
formulae.
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