Using the AADL to describe distributed applications
from middleware to software components

Thomas Vergnaud Laurent Pautét and Fabrice Kordoh

1 GET-Télécom Paris — LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France
t homas. vergnaud@nst . fr, laurent.pautet@nst.fr
2 Université Pierre & Marie Curie, Laboratoire d’Informatigjde Paris 6/SRC
4, place Jussieu, F-75252 Paris CEDEX 05, France
fabrice. kordon@i p6. fr

Abstract. Distributed Real-Time (DRE) systems require the verifmatf their
properties to ensure both reliability and conformance ittairrequirements. Ar-
chitecture description languages (ADLs) such as the AADavjole adequate
syntax and semantics to express all those properties onceagbonent of a sys-
tem. DRE systems rely on a key component, the middlewareldreas distribu-
tion issues. In order to build efficient and verifiable systethe middleware has
to be tailorable to meet the application needs, and to b&/easieled to support
a verification process. We propose the schizophrenic acthite as a canonical
solution to these concerns. We study how to describe thelevidde architecture
using the AADL. We also study how the AADL can be used to agatedghe
different aspects of the modeling of a complete system:itatiare, behavioral
descriptions, deployment, etc.

1 Introduction

Distributed systems are widely used in various applicatiomains such as embedded
systems, business applications or web applications.iBuston has to address different
requirements, either related to system constraints (¢xectime, memory footprint,
limited bandwidth. . .) or related to the application degigruse of legacy components,
programming languages heterogeneity. . .).

An application can take advantage by the reuse of COTS to awhdevelop-
ment costs. Besides, architecture description languagjek)(can capture the design
of a complete application and of its key components. As tHewafor a more ab-
stract view of the application than programming languatiess; help in identifying the
structural components, and eventually expressing prieggesh the whole architecture.
Large projects rely on an ADL to design embedded systemslditian to architectural
considerations, attention is focused on property verificab assess system reliability.
The ASSERT projeét coordinated by the European Space Agency and the Euro-
pean Union, chose the Architecture Analysis & Design Laiggu@ADL) as a support
for modeling. The AADL is targeted to the description of riale embedded systems.

3 http://www.assert-online.org

Itis based on component composition and provides very coenefacilities to specify
properties on the architecture. AADL descriptions arettigielated to the implemented
systems they represent, and the AADL provides support fetesy generation.

Distributed systems rely heavily on middleware to handlarge part of the distri-
bution issues [1]. Compliance to constraints can only bédigdronce the system has
been completely designed; in order to ensure property eatifin, the middleware has
to be modelled as well as the other system components.

As amiddleware is a complex piece of software, modellingtihwan ADL may be a
very tedious task. Moreover, middleware usually implera@rgiven distribution model
like CORBA [2], DSA [3] or Web Services [4]. Middleware mayJea very different
architecture depending on the distribution model it impbams. To overcome these is-
sues, we propose to focus on a middleware architecture wincid be representative
of most middlewares.

Schizophrenianiddleware allows to instantiate a generic middleware foe or
more distribution models. In other words, such a highlyoraible middleware can be
adapted to meet the exact application requirements. Imf@presented PolyORB, an
implementation of the schizophrenic architecture.

The schizophrenic architecture can be decomposed intoedevel| identified com-
ponents that can be analyzed. Thus it eases the modelingidfewiare; its clear struc-
ture facilitates its description using an ADL. This can epssperty verification, con-
figuration and deployment of an application.

Our long-term objective consists of extracting generapprties from distributed
real-time embedded (DRE) systems. In this paper, we ainudystg the ability of the
AADL to describe such systems from middleware to applicatiomponents. As a case
study, we especially focus on the middleware, which reprissthe core component
of a DRE system. Because of its clear structure and its vlingathe schizophrenic
middleware architecture is a good candidate to evaluate IAkDdelling capabilities.

This paper is structured as follows. We first give an ovenaéthe AADL and its
main features. We then describe the schizophrenic ar¢hiteand explain why it is
a viable choice to model middleware. We give some elementsoanto describe the
architecture of a system based on a schizophrenic middéeugiing AADL. We finally
study how the AADL can be used to federate all the aspects ystars description.

2 Modeling the architecture using the AADL

The AADL is an evolution of MetaH, [6] and thus they share mangnmon features.
The AADL aims at allowing for the description of DRE systenysassembling blocks
developed separately. Thus, it focuses on the definitiofeaf dlock interfaces [7], and
separates the implementations from those interfaces.
The AADL standard [8] is based on a textual syntax. It alsovjges a graphical
notation. An XML notation [9] is also defined to ease intenaghdity between tools.
It also defines a run-time and how to translate AADL constounst into programming
languages [10]. Hence, the structure of an application esguibomatically generated.
An AADL description consists oEomponentsEach component has an interface
providing features(e.g. communication ports), and zero, one or several imgfem

tations. The implementations give the internals of the conemt. Most component
implementations can hawbcomponentso that an AADL description is hierarchi-
cal. The components communicate one with anothezdnnectingheir features. The
AADL defines a set of standapiopertiesthat can be attached to most elements (com-
ponents, connections, ports, etc.). In addition, it is fids$o add user-defined proper-
ties, to specify specific description information.

2.1 Components

Basically, an AADL description is a set of components thatesent the different el-
ements of the whole architecture. The AADL standard definésvare and hardware
components; so it is possible to model a complete system.

Execution platform componentsrepresent all the components related to the com-
puters and networks that are part of the whole system.

— busesare used to describe all kinds of networks, buses, etc;

— memoriesare used to represent any storage device: RAM, hard disk,. ..

— processorsnodel micro-processors with schedulers: they are the géereggresen-
tation of a computer shipped with a basic operating system;

— devicesrepresent components whose internals are not preciselyrkndypical
examples of such black boxes are sensors: the knowledgstsdito their external
behavior and their interface. We do not control their suicest

Execution platform components are mostly hardware commpisn¥et, components
like devicesor processorsnay have software parts.

Software componentsllow for the description of pure software elements (no hard
ware is involved).

— datacomponents are used to describe data structures that aed gtonemoryor
exchanged between components;

— threadsare the active components of a software application;

— thread groupgather severahreads thus allowing to describe a hierarchy among
thethreadsof an application;

— processegorrespond to memory spaces used to exettutads A thread must
execute within gprocessand aprocesanust have at least oribread

— subprogramscorrespond to procedure calls in imperative programinguages
such as Ada or C. They allow to model an entry point thr@ador adatacompo-
nent (which can be viewed as a class for object oriented kgpeg) or can simply
be used to model normal subprograms.

Systemsare either used to make high-level descriptions or to addithy in the
description. They contain other components, and thus athemepure software nor
pure hardware componengystemslescribe self-sufficient components. For instance,
a thread cannot be directly put into aystemsince athread must be contained in a
process.

The AADL introduces the notion afomponent typeandcomponent implementa-
tions A component typeorresponds to what is visible from the outside of the compo-
nent, such as its interface (basically its inputs and os)patomponentimplementation
describes the internals of a component: its sub-componiitEonnections between
them, etc. There can be several differenplementationsf a giventype The AADL
also allows for the inheritance abmponent typeandcomponent implementationes
typeor animplementatiortan extend another one.

Subcomponents are instantiations of component types demgntations, the same
way as objects are instances of classes in object oriemgdéges.

2.2 Ports, subprograms and connections

Components communicate througbrts and subprogram callsthat are provided as
features of the component type.

Ports are used to model asynchronous communications:

— data portsare associated to a data component. They can be comparezistath
of a port in an integrated circuit: the destination compamegy or may not listen
to the data. If not, the information is lost;

— event portxan be seen like the signals of an operating system. Compadada
ports they can trigger events in components, but do not carry. datiike data
ports, a queue is associated with each event port;

— data event portdiave the characteristics of the two former ports: they ciggéer
events and carry data. They are typically used to model themamications with
message oriented middleware.

Event data ports can be used to model communications basae@ssage passing.
Portscan be declareh, outorin out

Subprogramsorrespond to synchronous calls, like Remote Proceduits (PC)
or direct procedure call (as defined in programming langsjpged accept, outand
in out parametergparametersaare comparable tdataports orevent datgorts, but are
synchronous and dedicateddobprograms

2.3 Properties and property sets

The AADL defines a set of standard properties. These are assgeify execution
deadlines fothreads bindings between software and execution platform comptsne
protocols forconnectionstransmission times fdsuses etc. They can describe all the
information required to check the validity of the systemtamcomplete the description
of its architecture.

Property types can be integers, floats, strings or booleansponenteferences or
enumerations. Complex data structures such as Ada reco@lstauctures do not exist.

Eachpropertyname is meant to be applied to some (or all) elements of aigéeor.
processors, connections, ports, etc.

Properties can be specified inside elements (e.g. comptypesor implementa-
tions). They can also be associated to instances of subcompoimbigsllows for great

flexibility, as a given component implementation can be abtrized when instanti-
ated; it is not necessary to specify another implementation

If a given characteristic does not correspond to a propdrthe standard set of
properties, it is possible to define specific propertiesygusioperty setsA property set
defines a namespace that contgiraperty typesandproperty names

2.4 Packages

By default, all elements of an AADL description are declarea global namespace. To
avoid possible name conflicts in the case of a large desmnipitiis possible to gather
components withipackages

A packagecan have a public part and a private part; the private pantlis\asible
to elements of the same package.

Packagescan containcomponenteclarations. So, they can be used to structure
the description from a logical point of view — unlike systertieey do not impact the
architecture.

3 Architecture concerns for distributed applications

Middleware is a fundamental element of a distributed ajpfilie), as it addresses several
distribution issues. Some of them are related to the digeibnature of the application,
like the location of the physical nodes. Others are reladeglch local node, like the
execution of the whole application. Some other considenatare related to both lo-
cal configuration and deployment, like the communicatiast@rol used between the
nodes. All these issues can be separated, as shown on figarthik paper, we focus
on the local node concerns.

application architecture

— | T~

configuration topology deployment

local node distribution

Fig. 1. Principles of distributed application description

3.1 Tailorable middleware architectures

There are two main reasons to design a highly tailorable imdate. First, such a mid-
dleware would fit exactly with the application requirementith a reasonable develop-
ment cost. Second, it could meet the requirements of sesgstdm families by being
configured for a specific distribution model. Some middlenanchitectures have been
proposed to provide tailorability; for example configuebhd generic middlewares.

The main limitation of configurable architectures (e.g. THQ]) is that they fo-
cus on a given distribution model (CORBA in the case of TAQ)e¥ are not efficient
enough with applications that do not fit well into this mod&h application designed
in a Message Oriented Middleware (MOM) approach will not beelicient if imple-
mented with a Distributed Object Computing (DOC) middlesvsinch as TAO.

The main drawback of generic architectures (e.g. Jonatti2lh s that the devel-
opment of a new personality implies the engineering of aiiggmt amount of code.
For instance, since Jonathan is mostly based on abstractaices, personalities like
David (for CORBA applications) and Jeremie (for RMI apptioas) reuse only 10%
of the generic code. Despite the fact that such an archieectwld be a good solution
to adapt the middleware to application needs, the cost sfatiaptation is too high in
most cases.

3.2 The schizophrenic architecture

Configurable and generic architectures ease middlewargatdm; they are one step
towards middleware modularity. However, they do not previdmplete solutions, as
they are either restricted to a distribution model, or topemsive. A middleware archi-
tecture combining configurability, genericity but also eeksing interoperability with
other middlewares is needed to support a distribution gtfugture that can be fully
tailorable and built from reused components.

This requires an architecture that provides a synthesiséffefeint middleware ar-
chitectures, and emphasizes the separation of concerok. &uarchitecture should
be compared to the one adopted in classical compilers: demthieory describes a
flexible architecture, separating machine code generétion source code analysis: a
front-end module analyzes source code; a back-end assemhblehine code; both of
them interact using different neutral representationsjets like GCC clearly demon-
strates componentreuse capabilities while providing ettfpr multiple languages and
targets.

Similarly, we proposed an original middleware architeetwhich separates con-
cerns between distribution model API and protocol, andrtimplementation related
mechanisms.

Decoupling middleware functionalities A schizophrenic middleware refines the def-
inition and role of personalities. It introducapplication-levelandprotocol-levelper-
sonalities and aeutralcore layer which are to middleware what front-ends, badaksen
and an intermediate layer are to compilers.

Application personalities constitute the adaptation layer between application com-
ponents and middleware through a dedicated API or code gtmethey provide ser-
vices similar to those provided by a compiler front-endnsifation of high-level con-
structs into simpler ones. They provide APIs to plug appiicacomponents with the
core middleware; they interact with the core layer in oradealiow the exchange of
requests between entities.

4 Free software compiler front-ends and back-ends avaikstiiet p: / / gcc. gnu. or g

— On the client side, they map requests made by client compsfrem their perso-
nality-dependent representation to a personality-indéest one. This neutral rep-
resentation is then processed by the neutral core layerdiseme translated back
from neutral to personality-dependent form.

— Onthe server side, they receive requests for local objemts the core middleware,
assign them to actual application components for evaloasind return results.

Application personalities can instantiate middlewarelangentations such as CORBA,
the Distributed System Annex of Ada 95 (DSA), the Java Messgyvice (JMS), etc.

Protocol personalitieshandle the mapping of personality-neutral requests (rep-
resenting interactions between application entitiesp anéssages exchanged using a
chosen communication network and protocol; similar to a iten back-end which
transforms intermediate code representation into lowl Isx@emonics. Requests can
be received either from application entities (through apliaption personality and the
neutral core layer) or from another node of the distributepliaation. They can also
be received from another protocol personality: in this ¢hseapplication node acts as
a proxy performing protocol translation between thirdtpawodes. Protocol personal-
ities can instantiate middleware protocols such as IOPQORBA), SOAP (for Web
Services), etc.

The neutral core layeracts as an adaptation layer between application and piotoco
personalities. It manages execution resources and prothdanecessary abstractions to
transparently pass requests between protocol and apptigatrsonalities in a neutral
way. Itis completely independent from both application pratocol personalities. This
enables the selection of any combination of application@ngrotocol personalities;
as the GCC compiler allows the selection of any given frard/eack-end pair.

Fundamental servicesA schizophrenic middleware requires a flexible implemeatat
and the identification of the functionalities involved irmgteest processing to ease the
prototyping of new personalities and their interactions.

Figure 2 describes the main elements of the schizophrectiitacture.

application

appli. perso. /

addressing el activation
p-broker _' :
binding

protocol — represent.
proto. persd,

Fig. 2. The schizophrenic architecture

|_ transport =

The personalities and the neutral core layer are built orofogeven fundamental
services embodying client/server interactions found endistribution models.

A client personality invokes theddressingservice to get the reference of the server
entity (e.g. an object). Thieinding service then associates a binding object to this ref-
erence; a gateway is created between the actual servgramdithe surrogate entity on
the client side. Th@rotocol service calls theepresentationservice to format the re-
quest data and sends them throughtthasport service. Upon reception on the server
side, theactivation service ensures the targeted entity is available. &tezutionser-
vice is then invoked so that the targeted entity actuallycesses the request. The re-
sponse is returned using the same mechanism.

The composition of these fundamental services allows feritplementation of
different distribution models. The inner part of the middése core is controlled by a
central element nameatbroker, on which the services rely. It is formally descdbe
and supports verification facilities to ensure real-timeparties [13].

A distributed application is made of several componentgygiortant one being the
middleware. The schizophrenic middleware architectuo@ipies a canonical architec-
ture, made of fundamental services that provide well idiedtfunctions. Schizophrenic
middleware is versatile enough to instantiate middlewappsrting different distribu-
tion models. The architecture of the neutral core layer iesnanchanged from one in-
stantiation to another. It can ensure various propertigartiéng real-time requirements.
The schizophrenic architecture helps model middlewanegusicomponent-based lan-
guage such as an ADL.

4 Using the AADL to describe a DRE system

We now present elements on the description of the server ofo@lsimple mono-task
application. We first describe the middleware architectiités description is based
on PolyORB, our implementation of the schizophrenic agttiiire, presented in 3.2.
We then describe how the middleware part integrates wittother parts of the whole
server application: the application itself and the operpsystem.

4.1 Describing the schizophrenic architecture

Middleware is made of active components (tleeadg that call reactive components
(i.e. subprogramy The data exchanged between subprograms or threads asdedod
by datacomponents.

The middleware architecture mainly consists of the reactemponents. Those
components model the different middleware parts: per#gsand the internals of the
neutral core layer. Those parts naturally correspond to AABckagesWe cannot use
systemgo structure the architecture into more abstract compaeném AADL syntax
does not allowsubprogramgo be subcomponents eystems

A middleware configuration consists of a selection of therappate component
implementations for the neutral layer and the personalitie

The seven services of the neutral layer andptieoker are represented by distinct
packages. Thus we can isolate the different fundamentatifurs of the neutral layer.
The public part of each package should only contain the sigspms that are required

for the interconnection with the other elements of the maddire. The auxiliary sub-
programs are to be placed in the private part of the pack&gethe public parts of the
packages will contain the data components and the entrygfinthe services.

Protocol and applicative personalities are not modeledahge way. An application
personality can be modeled as a subprogram. This subpragreobe called by the
execution service, which transmits the neutral requess méutral request has to be
translated into the particular data format used by the agfiin. This translation is
typically handled by auxiliary subprograms of the persitnal he main subprogram of
the personality is to be placed in the public part of the peatity package, while the
translation subprograms should be in the private part.

A protocol personality is actually a combination of threevéees: protocol, trans-
port and representation. Consequently, a protocol pelispney just correspond to a
selection of given service implementations. However, acfice, protocol personalities
often require specific service implementations. So a padtpersonality is typically
modeled by a package which contains the required servickemgntations.

The active part of the middleware is an executibread The thread receives re-
quests and returns responses usingkets socketsare modeled as event data ports,
since at the lowest network level, data frames can be agtoathpared to messages.

Upon the reception of a request, this thread calls the sgjoanos of theu-broker.
Then thep-broker will invoke the appropriate services to processréwiest. The re-
sponse returned by thebroker will be sent back by the thread.

4.2 Describing a complete node

We gave the outline of the description of a schizophrenicdfeidare architecture us-
ing the AADL. In order to be able to perform analysis relateartemory footprint or

schedulability, we have to completely describe each nodkeflistributed system. A
node is constituted by the application executed on the nibgemiddleware and the
operating system components (cf. figure 3). The hardwatep#re system could also
be of some interest, but we will not discuss this here, as waeson the software archi-

tecture.
application
middleware

| operating system

Fig. 3. A server application

The application relies on the middleware and operatingesystomponents. Since
the application consists of purely software componengs (hainly subprograms), it
should be described as a package, like the middleware afiphigpersonalities.

The operating system can be modeled by a set of subprogrames. & processor
component is meant to model both a hardware micro-procesgba minimalist oper-
ating system, the entry point subprograms of the operatisigs may be integrated in
a processor component, while the auxiliary subprogramkldmilocated in a package.

The middleware and application subprograms and the thramdmstantiated as
subcomponents of a process. This process must be bound podtessor which con-
tains the operating system.

5 Discussion

We gave the main lines of the modeling of the server part of lg®RB-based DRE
system using the AADL.

We isolated three main parts: the operating system, thelavidde and the applica-
tion itself. These three parts are independent enough teebtet as separated issues,
provided that the interfaces are clearly defined. This alltwe separate development of
the different parts of the system. For example, in the ASSBRJect, PolyORB is to
be used on the real-time kernel ORK [14], separately deeslophe middleware itself
is not represented as a component, but as a set of comporéinedtin packages; this
illustrates the fact that the middleware is part of the aggtion, not an independent
component. The services of the schizophrenic architectumain easily identified.

A noticeable aspect of this description is that all AADL pagks and components
have clearly identifiable Ada counterparts: AADL packagesespond to Ada pack-
ages, same thing for subprograms; threads can be compatethttasks. The AADL
allows the specification of additional properties, suchx@setion time, etc. In addition,
the AADL allows for the description of hardware componeittgrovides a unified no-
tation to describe the whole system.

We can see that a software description made with the AADLdeaainly to define
subprogramsTherefore, a too much detailed description would neadd le a direct
mapping between Ada procedures and AADL subprograms, whazhd be useless.
The AADL subprogramshould rather correspond to sets of Ada procedures.

Component implementation should not necessarily be destriusing program-
ming language: as it is the control part of the middleware,ttbroker is likely to
be modeled using formal methods in order to ensure the iitjadf the application.

So, the generation of the whole system shall require intdiaibe code generation:
some components are described using formal methods; @htemirely related to the
middleware configuration (e.g. the execution service) eOgarts of the middleware,
such as the personalities, are likely to be written in pladtafor any language chosen
to implement the subprograms).

Relevant properties, such as the required amount of memdhggrocessing time
could be associated to each component of the descriptias. Wduld facilitate the
verification or the simulation of the whole system.

Besides node generation or analysis, the AADL could alsodeel to describe the
deployment of the whole distributed system. GLADE, an impatation of the Dis-
tributed System Annex (DSA), provides a configuration laggito partition a dis-
tributed system. We are currently working on an AADL modeganeralize such an

approach for any distribution model and to express the gepdmt of a distributed sys-
tem using AADL properties.

Tools are required to process AADL descriptions: performalygsis on the descrip-
tion (schedulability of the whole system, compliance totsysconstraints...); or to
instantiate an executable system, by generating the codbd@omponents, and then
linking them to an AADL execution runtime; or to configure aheploy a system, ac-
cording to its description; or simply to check the syntax #imel completeness of the
description.

OSATE, an open source tool, has been developed for this purpo. IS writ-
ten in Java and is bound to the Eclipse platform. OSATE is meareceiveplug-ins
that perform analysis, code generation, etc.

Since we are developing PolyORB in Ada, the fact that OSAT& Jawva oriented
tool is a drawback for us. As we are experimenting with the AAle need complete
control on the tools, so that we can study some extensiorfsetdADL syntax, etc.
Thus we are developing our own multi-purpose free softwaokin Ada 95: Ocariné

Ocarinais a set of libraries built around a central core. ddre provides an API to
manipulate and check the semantics of AADL models. We deesl@a parser/printer
for the AADL syntax as described in the revision 1.0 of thenderd. Other modules
are under development, such as an XML parser/printer tothasateroperability with
other tools (e.g. OSATE). Ocarina will be used for the configion and deployment
tools associated with PolyORB.

6 Conclusion

In this paper, we focused on the modeling of DRE applicatiBusiding DRE applica-
tions requires verifications on the architecture. Suchieations are related to quanti-
tative properties like timeliness or memory footprint, adivas properties of reliability
(no deadlocks, no starvation, etc.).

We first presented the Architecture Analysis & Design Lamgud he AADL aims
at describing systems as an integration of separate comfmoraformation can be
associated to the architectural description, using ptagser

We outlined the fact that distributed applications havéedént and specific require-
ments. As designing specific middleware to a specific apidicavould cost too much,
therefore, adaptable middleware is required that can masymiifferent requirements.
There is a need for fully tailorable middleware which can bséfied.

We introduced the schizophrenic architecture as a goodisolto middleware tai-
lorability. It relies on a clear separation of middlewaradtions and can then be struc-
tured into different modules; thus it eases modeling usingliages such as the AADL.
As a large part of a schizophrenic middleware implementatmains unchanged, ver-
ification can be performed.

We showed how to describe the architecture of a node of aldistd applica-
tion. We first described the middleware part and then itgiraion into the application

5 available aht t p: / / ww. aadl . i nfo
6 available ahttp: // eve. enst.fr/ocarina

node. The AADL allows for a clear modeling structure. Arelstural description and
properties provide all the required information to configarlocal application node.
In addition, the AADL can integrate behavioral descriptia the components, using
either programming languages or formal methods. As additiproperties can be de-
fined, the AADL can also be used to describe the deploymeitteofvhole distributed

system. Consequently, the AADL can be used as a unificatigulzge to aggregate all
that is required to entirely describe a DRE system.

References

N

10.

11.

12.

13.

14.

. Bernstein, P.A.: Middleware: An archictecture: for diaited system services. Technical

Report CRL 93/6, Cambridge MA (USA) (1993)

. OMG: The Common Object Request Broker: Architecture apec8ication, revision 2.2.

OMG (1998) OMG Technical Document formal/98-07-01.

. Pautet, L., Tardieu, S.: GLADE: a Framework for Buildingrge Object-Oriented Real-Time

Distributed Systems. In: Proceedings of the 3rd IEEE Irggomal Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’00), Nt Beach, California, USA,
IEEE Computer Society Press (2000)

. W3C: Simple Object Access Protocol (SOAP) 1.1. (20@®): / / www. w3. or g/ TR/ SOAP/ .
. Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: PolyO&Bchizophrenic middleware

to build versatile reliable distributed applications. Rroceedings of the 9th International
Conference on Reliable Software Techologies Ada-Eurofid ZB.ST'04). Volume LNCS
3063., Palma de Mallorca, Spain, Springer Verlag (2004)-1069

. Vestal, S.: Technical and historical overview of Metatdchnical report, Honeywell (2000)

available ahttp://1 a. sei.cnu. edu/ aadl i nfosi t e/ Met aHPubl i cations. htni .

. Lewis, B.: architecture based model driven software arsiesn development for real-

time embedded systems (2003) avilablehat p://1a. sei.cmu. edu/ aadl i nfosite/
AADLPubl i cations. htm .

. SAE: Architecture Analysis & Design Language (AS550@D04) available ahttp://

WM. Sae. or g.

. Feiler, P.: Annex A: AADL Model interchange formats. (20®art of the AADL standard,

available from SAE.

Tokar, J.: Annex D: Language compliance and applicaitiogram interface. (2004) Part of
the AADL standard, available from SAE.

Schmidt, D., Cleeland, C.: Applying patterns to devedgfensible and maintainable ORB
middleware. Communications of the ACM, CACAO (1997)

Dumant, B., Horn, F., Tran, F.D., Stefani, J.B.: Jonattem open distributed processing
environment in java. In: Proceedings of the IFIP InternaioConference on Distributed
Systems Platforms and Open Distributed Processing, Len8gringer Verlag (1998) 175—
190

Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L.aBa S., Vergnaud, T.: On the Formal
Verification of Middleware Behavioral Properties. In: Peedings of the 9th International
Workshop on Formal Methods for Industrial Critical Syste(RMICS’04), Linz, Austria
(2004) To be published.

de la Puente, J.A., Zamorano, J., Ruiz, J., Fernande@aRcia, R.: The design and imple-
mentation of the Open Ravenscar Kernel. In: ProceedingsedE@th international workshop
on Real-time Ada workshop, ACM Press (2001) 85-90

