
A Model Based Development Approach
for Distributed Embedded Systems

Frédéric Gilliers2,�, Fabrice Kordon1, and Dan Regep1

1 Laboratoire d’Informatique de Paris 6, 4 place Jussieu,
F-75252 Paris Cedex 05, France

{Fabrice.Kordon,Dan.Regep}@lip6.fr
2 Sagem SA,

21 Avenue du Gros Chêne, 95610 Eragny,
BP51, 95612 Cergy Pontoise cedex, France

Frederic.Gilliers@lip6.fr

Abstract. Design of reliable distributed systems is stretching limits in terms of
complexity since existing development techniques are usually not fully accurate
for this type of applications. The main problem is the gap between the various
notations used during the development process. Even if UML is a significant
step forward, it is not fully suitable for model based development of distributed
systems.
We present a model based development approach based on Lf P (Language for
Prototyping) applied to distributed systems. It emphasizes the use of a model
serving as a basis for automatic code generation; strong connections with formal
verification techniques enforce correcteness of the system. The paper focuses on
the description of code generation techniques.

1 Introduction

The fast evolution of distributed technology has led to systems stretching that stretch the
limits of complexity and manageability [12]. A major problem when distributed systems
have to be certified resides in both the design and coding phases: collected requirements
may be incomplete, inconsistent or misunderstood, and the numerous interpretations of
a large specification often leads to unexpected implementation and additional debug-
ging costs.

The problem comes from the gap between the various notations used in the soft-
ware life cycle (natural languages, specification languages, programming languages).
A first solution is to use a methodology that provides a coherent set of notations to
solve this problem. The UML standard [18] represents a significant advance to system
specification, however:

– UML semantics is not sufficiently formally defined to enable formal verification
unless strong restrictions and hypotheses on its use are introduced (like in [2, 5]);

– Good code generators available for information systems are lacking for distributed
applications since UML is not fully adapted to capture all aspects of distributed
architectures [15];

� This work is done within an industrial grant provided by SAGEM S.A.

M. Wirsing et al. (Eds.): RISSEF 2002, LNCS 2941, pp. 137–151, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



138 Frédéric Gilliers, Fabrice Kordon, and Dan Regep

– UML relies on object orientation, that can be easealy implemented using middle-
ware such as CORBA [17] or Ada-DSA [7] that implement distributed objects.
However, the use of other classes of middleware (such as MPI [14]) requires the
implementation of adaptation components to handle object oriented mechanisms.
Similarily, implementation of an UML specification according to profiles for em-
bedded systems such as ravenscar [4] is delicate since dynamic mechanisms are
forbidden in such systems;

– The behavioral semantics of UML will remain informally defined for several years
since the 2.0 initial submission claims it essentially formalize static/structural as-
pects [19]. It introduces OCL to define constraints precisely but only a very limited
number of pages are dedicated to the description of unambiguous behavior of a
system.

Therefore, for distributed systems, UML is mostly valuable in the early stages of
the software life cycle. When a preliminary object-oriented solution is sketch, there
is a need for another type of description closer to implementation (e.g. that does not
necessarily rely on object oriented middleware). This new description should enable
both formal verification (a well accepted approach to ensure high quality in distributed
systems) and automatic program generation (to ensure coherence between specification
and program).

This paper presents our proposal for a model based development approach. It em-
phasises the use of a model that formally defines behavioral aspects of the system. This
model is used to automatically generate the control code of a distributed application. It
is also suitable for formal verification.

Our methodology is presented in section 2. It relies on a notation briefly described
in section 3. We then focus on how programs can be derived from these specifications
in section 4.

2 Model Based Development

Model-based development [22] focuses on the use of a model that serves as a basis for
two main objectives: formal verification and automatic program generation. We favor
this approach and consider that it corresponds to an evolutionary prototyping approach
[11]. Our proposal relies on Lf P, a high-level modeling language that unambigously de-
scribes the behavior of a distributed systems using Behavioral diagrams (automata with
structuring facilities). Behavioral diagrams express contracts to be obeyed by compo-
nents of a distributed system. For example, a class C may state that method M1 has
to be executed prior to the execution of mehod M2. It may also state that method M2

cannot be executed twice. Lf P also provides facilities to insert assertions like invariants
of temporal logic formulas into the model. This information is suitable for verification
purposes and can be used by code generators to optimize programs.

We aim to formalize relations between system modeling, formal verification and
code generation of distributed systems in order to provide:

– transparent formal verification to enable its use in an industrial context without
requiring both a heavy training and some specific skills, as outlined in [13],



A Model Based Development Approach for Distributed Embedded Systems 139

UML model LfP model

Formal spec. 
generator

Program 
generator

Formal spec.

Execution environment

Programs
Unambiguous behavioral description
Assertions (properties to be verified)

Implementation directives
ADL capabilities

Fig. 1. Model based development using evolutionary prototyping.

– strong correspondence between the detailed description of a system, its proofs and
its implementation. In other words: “what you describe is what you check and im-
plement”.

As shown in Fig. 1, we aim to plug our model based development approach into
a “classical” requirement/analysis phase that produces an UML model. First, a refor-
mulation of this model into Lf P must be considered. Most of the work should be done
by a tool (producing behavioral state machines from collaboration diagrams cannot be
completely automated [9]) but designers have to add information such as the behavioral
contracts and assertion to be verified (e.g. “this server has to provide an answer”) that
cannot be automatically deduced from UML diagrams. When program generation is
used, designers also add informations used by code generators (e.g. “components af-
fected to this host are coded in Java”). This additional information is sometimes located
in UML tagged values supported by some CASE tools. However, such information is
potentially non standard.

From this central description two types of operations can be performed:

– Formal specification generators produce formal specification to be verified: the
transformation is optimized according to the property to be verified (i.e. the ap-
propriate couple <formal method, used technique> is selected).

– Program generators produce source files to be compiled and integrated in the target
execution environment. These generators have to deal with code generation tech-
niques (how to translate the Lf P semantics into a given language) but also with
configuration and deployment of the system on top of the target architecture.

Model-based development, similarly to model driven architecture [20], is a devel-
opment strategy promoting the use of various techniques: modeling (as precise as pos-
sible), verification techniques (formal is safer but any other evaluation techniques can
also be considered as a first step), and program generation.

In that context, a modeling language such as Lf P serves as an interface to elaborate,
by successive refinements, a very precise view on the system, taking advantage of:

– information provided by formal verification (e.g. are all assertions verified?),
– information provided by the execution of previous prototypes (e.g. are performance

goals met?).

This paper focuses on program generation techniques. More information concerning
formal verification from Lf P can be found in [10].



140 Frédéric Gilliers, Fabrice Kordon, and Dan Regep

3 The LfP Formalism

This section summarizes the main features of Lf P. It is an Architecture Description
Language with coordination facilities that focus on distributed systems. In order to en-
hance UML models with information that enables automatic code generation of dis-
tributed programs as well as formal verification, we define three orthogonal views:

– The functional view describes the system software architecture, and links classes
(that are execution units) to media (that are communication mechanisms). Both
classes and media are described in terms of execution workflow in order to precisely
establish behavioral contracts to be analysed and programmed.

– The implementation view describes the system implementation constraints (target
executive, programming language, communication infrastructure) and the deploy-
ment topology.

– The property view specifies properties to be verified by the system (analogous to
the notion of proof obligation in B [1]). Such properties are stated by means of in-
variants (for example, confirmation of a mutual exclusion), temporal logic formulas
(for example, to the availability or fairness of a service) or other assertions that can
be converted into a given formal method. This view can be exploited to perform
computer-assisted formal verification. Moreover, it introduces relevant information
for code generation (e.g. runtime checks).

The Gas Station Example. To illustrate Lf P features, let us present a model first
introduced in [6] and then widely used to demonstrate various verification techniques,
as in [3, 24].

It models the simplified behavior of a self-service gas station (see class diagram in
Fig. 2). When entering the station, a client prepays the operator, and receives a ticket
bearing his id. The client then proceeds to the pump, inserts his ticket, pumps up to
sum gas, and finishes his pumping operation. He then returns to the operator to get
his change and receipt before leaving the station. Information that concern clients being
processed is centralized in infosystem. The operator registers the client when it prepays,
and unregisters him when he returns. The pump accesses the infosystem when a client
activates the pump, and updates the credit when the client puts back the nozzle.

1..*1..1

1..*

0..*

1..* 1..*

1..*

1..*

InfoSystemOperator

PumpClient

Fig. 2. Class diagram of the gas station.

1

1 1

db-acs

1

cl

1 in

1

in-out
1

all

OC_chan

OI_chan

PI_Chan

CP_Chan

InfoSystemOperator

Pump

Client

Fig. 3. Lf P functional diagram of the gas station.



A Model Based Development Approach for Distributed Embedded Systems 141

System Architecture. Fig. 3 presents the architectural diagram of the station example.
It contains additional information that may be not present in the UML diagram, in
order to specify communication patterns between classes. Typically, relations between
UML classes (sometimes represented using associations) lead to the creation of media
(here OC chan, CP chan, OI chan and PI chan) to describe communication semantics
(behavior of communication elements).

Media and classes are connected by means of binders. This notion is inspired from
the notion of binding points in RM-ODP [8]. Binders define interaction points between
a class instance and a media instance. They correspond to interface buffers associated
with characteristics like maximum size, management strategy (FIFO, etc.) and overflow
strategy (message loss, client blocked, etc.). Deployment of binders is defined by means
of the cardinality (1 or all) specifying if they are shared or not. To avoid overloading
Fig. 3, we only list the binders related to CP chan and pump (cl, in-out and db-acs);
they are referenced later in the paper.

Let us illustrate how the cardinalities of the gas station model should be interpreted.
Fig. 4 shows a class architecture and Fig. 5 corresponds to the corresponding object
architecture with two instances of A and C and three of B and D. Each instance of
class A (as well as those of class B) has its own buffer connected to the communication
system while each instance of class C has its own buffer. Instances of D share a single
buffer.

1

C C-D
all

D

B
1

A-BA
1

   

   

Fig. 4. Class connections: examples.

D(3)

D(2)

D(1)
C(1)

C-D

C(2)

A(2)

A-B

A(1)
B(1)

B(2)

B(3)

Fig. 5. Class connections: instanciation.

There may be several interaction points (and thus binders) between a class and a
media when different characteristics are required. This is the case between CP chan
and pump, in Fig. 3: in-out is a two way binder (to support remote method invocation)
and sb-acs is a one way binder (used to propagate events).

The behavior of classes and media introduced in the functional diagram is formally
described using behavioral diagrams (Lf P-BD). They are hierarchical state machines
defining what action must be executed based on the internal state of a class instance.

The architecture diagram also declares the number of classes and media instances
to be elaborated when the system starts (this is not represented in Fig. 3).

Behavior of a Class. The behavioral contract of a class deals with methods and trig-
gers (an activation condition + code to be executed when the condition is satisfied).



142 Frédéric Gilliers, Fabrice Kordon, and Dan Regep

Methods are invoked by other components and triggers are activated by internal condi-
tions. Methods and triggers cannot be executed in parallel. The behavior of a class is
expressed using Lf P-BDs, a notation to express state machines. The main level defines
the activation conditions of methods and triggers; each transition of the automaton cor-
respond to a method or a trigger. Then, each method and trigger behavior is described
using a Lf P-BD, where transitions represent atomic actions to be performed.

Fig. 6, defines the relationship between pump’s methods: when start is operated,
pump gas can be executed until finish is called. Asynchronous methods can be com-
pared to message passing (like the asynchronous pragma in Ada-DSA [7]). This dia-
gram also declares variables known to the class. In pump, there are only local variables
(i.e. each instance of pump has its own copy) but class variables can also be declared
(i.e. one copy for all instances of a given class).

Fig. 6. Behavioral diagram of class pump. Fig. 7. Lf P-BD diagram of method start.

Methods have to be connected to binders through which they get parameters, send
results or invoke services provided by other classes. Triggers may also be connected
to binders if they send/receive information from other classes. These connections are
defined when describing the execution flow of a method (or trigger). Fig. 7 shows the
Lf P-BD that specifies the execution flow of start:

– at t1 and t2, the parameter cid of the method is extracted from the in-out connec-
tion point when the query is issued and then copied into variable id,

– at t3, the credit value for the client is requested through an invocation of method
get credit; the query message is issued and the pump instance waits until the
value is available to assign to variable c,

– at t3, an empty message is sent back to the client that issued the query to signal the
execution end (start is declared as a synchronous method in Fig. 6).

In order to get a complete view of a class behavior, the sub-diagrams that describe
individual methods are inserted in the behavioral contract. For instance, the begin state
of the start automata is merged with begin in the main diagram and the end state of
the start automata is merged with s1.

Media Behavior. Media have no methods. The associated Lf P-BD describes the com-
munication semantics to be supported.



A Model Based Development Approach for Distributed Embedded Systems 143

&in-out:M;b1

[M.method_name=finish] &cl:M;

b2

&in:M;

c2&cl:M;c1

[M.method_name=pump]

&in-out:M;

a2&cl:M;a1

[M.method_name=start]

Fig. 8. Partial behavioral description of the CP chan media.

Let us consider the specific protocol associated with media CP chan, that connects
a client to a pump (Fig. 8). The Lf P-BD states that:

– only one message is handled at a time by a given instance of media CP chan,
– variable M stores a Lf P messsage,
– messages coming from the binder cl are routed according to the method parameter

they transport; this is stated by means of the guards associated to transitions a1
and c1 (reference to the predefined operator method name). Method start goes to
binder in-out (an answer is expected, it will be sent via transition b1) and pump goes
to binder in (asynchronous method, no answer expected),

– messages coming from binder in-out are all routed to cl,
– no message originates at binder in.

Other capabilities of Lf P that are not listed here (but presented in [10, 23]) are:

– definition of constructors to dynamically create new instances of a given class,
– use of enhanced data structures such as arrays, records and bags,
– definition of critical sections to protect shared variables,
– use of predefined instructions to label transitions (basically, loops and tests),
– assertions that are “proof obligations” for verification, and may lead to the genera-

tion of runtime checks.

4 Code Generation from LfP

Code generation translates structures and operators into calls to the primitives of a run-
time that provides procedures and services required by the Lf P semantics. Generated
programs handle distributed control of the application and thus are executed over sev-
eral hosts. We first study the general architecture of generated applications and then
focus on the translation procedure itself.

4.1 Architecture of the Generated Code

Each host that supports execution runs a partition of the system (we call it a node)
according to the architecture presented in Fig. 9. A partition consists of classes, media
and/or binders instances.



144 Frédéric Gilliers, Fabrice Kordon, and Dan Regep

The generated application is built on top of a system-dependent layer, the runtime,
which provides a set of standard subroutines required to support the Lf P semantics.
The interface provided by the runtime to the generated programs remains the same,
whatever the target architecture. Therefore, for a given language, the generated code
may be deployed on various operating systems for which a runtime is available. To
ease the porting of the runtime, it is split in high level services containing non-platform
specific services (garbage collection if any, buffer management, etc.), and low-level
services containing platform specific services (such as threading mechanisms, mem-
ory allocation, etc.). Low-level services rely on the execution environment (operating
system and/or communications libraries and/or middleware).

Generated code

classes medias binders

Runtime

Execution environment

High level services

Basic services

Fig. 9. Architecture of the generated Code and its environment.

To ensure that generated code has a minimal footprint, high-level and low-level ser-
vices are divided into components corresponding to operations in Lf P. The component
corresponding to a given operation is embedded in the runtime if it is activated in the
corresponding node.

When a class or media is tagged external (e.g. it is legacy software), only interfaces
are generated. These interfaces should be enriched if necessary to fit the implementa-
tion of the Lf P interactions strategy. For example, if one wants to use sockets, a media
provides an abstraction of socket mechanisms that is used, first for modeling and ver-
ification, and subsequently to generate an empty interface that can be invoked by the
generated code. Mapping of the generated interface to sockets primitives has to be done
manually. External components are also a way to insert hand written code into an ap-
plication when the generated programs do not respect performances requirements.

4.2 Generating Code for Classes

Classes are the smallest unit of concurrency. Therefore the hierarchical automaton of a
class, defined by means of Lf P-BD, is translated into a sequential program. It appears
useful to maintain the hierarchical structure for two reasons: readability/traceability, and
optimization of the code. The code generator must consider the following elements:

1. data types used by the class,
2. local variables that are the non static attributes of the class,



A Model Based Development Approach for Distributed Embedded Systems 145

3. LfP-BD methods that describe the execution flow of a method,
4. shared variables that are the static attributes of the class (i.e. the variable is shared

among all the instances),
5. critical sections that specify synchronizations in the Lf P model,
6. evaluation of transitions guards that select the next transition to execute,
7. evaluation of assertions to perform runtime checks on the model,
8. connections to binders that correspond to synchronization points with a media,
9. the LfP-BD class behavioral contract that implements the Lf P-BD diagram of the

class.

The architecture of a class is presented in Fig. 10. The generated code for the Lf P
class is made of several interacting software units. For example, the code embedded
in PumpPackage contains of the following elements: PumpTask which implements the
class’s contract, PumpMonitor to synchronize the access to binders, PumpImplemen-
tation that embeds the class’s methods and local attributes, PumpPredicates which
contains the assertions and the guards associated to the class, PumpSharedVariables
which contains shared variables, and PumpTypes which implements local data types.

The class implementation is also related to global units: GlobalTypes defining
model level types, and some Binder elements implementing the connected binders.
For the pump class of the example, they are: in, in-out and db-acs (see Fig. 3).

PumpTask 

PumpPackage 

PumpImplementation

PumpMonitor

PumpSharedVariable

PumpPredicates

Binder

GlobalTypes PumpType 

BinderBinder

Fig. 10. Structure of the code generated for the pump class.

Global and specific types are embedded into separate packages that easily translated
into instructions since construction rules in Lf P types are very similar to those proposed
in conventional programming languages. Types and variables visibility is preserved to
avoid complex renaming and ensure readability. Global types definitions are produced
in a GlobalType component that is imported by the PumpPackage.

Shared variables of an Lf P Class are handled by a specific package (PumpShared-
Variables). Instances of a class may be created on several nodes of the application
and variables remain global whatever the distribution is. Therefore, the generated code
handles consistency of these variables and provides synchronization as well as set and
get primitives.



146 Frédéric Gilliers, Fabrice Kordon, and Dan Regep

Transitions guards enable or disable transitions. If a guard only refers to local vari-
ables, it is implemented as a boolean condition. If it refers to the body of an incoming
message, it is implemented via a two phase transaction handled by the related binders.
There are three primitives: Get retrieves the message from the buffer, commit completes
the current transaction when the guard is satisfied, and rollback aborts it. When a state
is followed by alternative transitions, a select-like structure is generated, as shown for
s1 in the behavioral contract of pump (see Fig. 6).

Assertions are also implemented as boolean expressions that may raise an exception at
runtime. Assertions and guards are embedded into the PumpPredicates program unit.

Methods and local variables are both implemented in PumpImplementation. Code
generation reproduces the automata hierarchical structure: code for transitions performs
operations, states are associated with labels. For a given State the execution sequence
is: 1) evaluation of guards, 2) execution of the transition body, 3) verification of asser-
tions if any, 4) jump to next state.

Relation to binders are implemented using a monitor (PumpMonitor). There is a mon-
itor for each class instance. Its role is to synchronize execution of the class with incom-
ing messages. When a message is required to fire a transition, the program registers with
the binder and waits until the message arrives. If a message is already in the queue, the
invocation of the registration primitive is non-blocking. When a message is read, the
PumpTask unit (that handles the execution contract) may evaluate a guard to decide if
the message has to be consumed or not.

The behavioral contract is implemented as a separate task for each instance and lo-
cated in PumpTask. It only accepts messages corresponding to methods that are enabled
in its current state. The current state is encoded as a local variable that selects an case
alternative.

To read messages from binders, the task first resets the associated monitor, then
registers itself with binders. When a message can be read (e.g. there is a message
respecting the transition guard), the class consumes it, unregisters from the binders,
executes the selected method, verifies the corresponding assertions and goes to the next
state. When no message is available or conform to the guard, the task waits on the
monitor (sleep entry of the monitor) until a message arrives to one of the connected
binders.

Writing into a binder is simpler, a class instance puts the message into the binder.
Fig. 11 illustrates the structure of the code generated for state s1 of class pump

(see Fig. 6). In this state two methods are enabled; the one to be fired depends on the
next binder that will receive a message. First the class resets its monitor and register
itself with the two binders. Then it loops to check the content of both binders. If any
valid message (e.g. satisfying the transition’s guard) is found, the class executes corre-
sponding code, unregisters itself from the binders and jump to the next state. If no valid
message is found (there is no message or the first one is not valid) the class waits on the
monitor. Invalid messages are left in the binder.



A Model Based Development Approach for Distributed Embedded Systems 147

      -- non-blocking retrieval of an eventual message
      in.get(message) ;
      -- if a message exists in the in binder
      if message /= null then
         -- if it is a finish call and guard is true
         if Pump_Predicates.Finish_pre(message) then
            -- consume the message
            in.commit();
            -- unregister from binders
            in.UnRegister(this);
            in-out.UnRegister(this);
            -- execute the finish method
            Pump_Implementation.Finish();
            -- check assertions
            Pump_Predicates.Finish_assert();
            -- jump to next state (Begin_State)
            goto(Begin_State);
         else
            in.rollback();
         end if;
      end if;
      -- Sleep on the monitor until next message on
      -- registered binders
      Pump_Monitor.Sleep(wait_delay);
   end loop                                             

S1_State:      
   -- reset the monitor
   Pump_Monitor.reset();
   -- register to connected binders
   in-out.register(this);
   in.register(this);
   loop   
      -- non-blocking retrieval of an eventual message
      in-out.get(message);
      -- if a message exist in the in-out binder
      if message /= null then
         -- if it is a pump call and guard is true
         if Pump_Predicates.Pump_gas_pre(message) then
            -- consume the message
            in-out.commit();
            -- execute the pump_gas Method
            Pump_Implementation.Pump_gas(message.qt);
            -- check assertions
            Pump_Predicates.Pump_gas_assert();
            -- unregister from binders
            in.UnRegister(this);
            in-out.UnRegister(this)
            -- jump to next state (S1_State)
            goto(S1_State);
         else
            -- unexpected messages or unverified
            -- guard, rollback transaction and
            -- try another binder
            in-out.rollback();
         end if;
      end if;

Fig. 11. Pseudo-code of pump related to state s1 and activation of methods pump gas and finish.

4.3 Generating Code for Media

Media are communication mechanisms between classes. Two strategies are considered.
When it is tagged “external”, the media corresponds to legacy software (a com-

munication library). Only an interface defining the functions required to interact with
associated binders has to be generated. The media definition is used first for modeling
and verification purposes, then to generate an empty interface to be invoked by classes.
For example if a designer wants to use sockets, the corresponding media provides ap-
propriate interfaces and abstraction. Mapping to the socket library has to be done man-
ually; the resulting component is reusable. Off-the-shelf media will be provided (such
as sockets or RPC).

When it is tagged “internal”, a media is translated into an automaton implementing
the specified protocol.

Media also allow support the definition of implementation-independent higer level
communication mechanisms. For example, a channel media may encapsulate various
types of implementations: sockets, shared data segments, etc. Such abstractions are of
interest to ensure portability over several target architectures (hardware + operating
system).

4.4 Generating Code for Binders

Binders are connection objects between instances of Classes and Media. They are im-
plemented as distinct code units. There are several implementation schema depending
on their characteristics: multiplicity, blocking/non-blocking primitive access, etc. Im-
plementation strongly relies on the Lf P runtime that provides generic message passing
and instantiation services.



148 Frédéric Gilliers, Fabrice Kordon, and Dan Regep

generic class Blocking_fifo (Size, Message_type, Client_ref_type)
begin
     protected entry Put (Message : in  Message_type) when not transaction;
     protected entry Get (Message : out Message_type) when not transaction;
     protected entry Commit () when transaction;
     protected entry Rollback () when transaction;

     protected entry Register (Client : in Client_ref_type);
     protected entry UnRegister (Client : in Client_ref_type);

  private : 
     Buffer is array (1..Size) of Message_type;
     First, Last := 1;
     No_items := 0;
     Client_list is list of Client_ref_type;

     Transaction is Boolean := FALSE;
end;

Fig. 12. Specification of a blocking FIFO.

Binders are implemented as instances of generic templates to enable pattern reuse.
Fig. 12 shows the pseudo-code of binders interface (here, a FIFO buffer). This template
has three generic parameters: size (capacity of the buffer), message type (type of
transported data), client ref type (reference type to designate clients).

Private data implement a fixed size FIFO, a list of subscribers and a boolean variable
to indicate if a get transaction is currently running.

Access to the template services are protected (i.e. both mutually and self exclusive).
Put, get, commit and rollback are I/O primitives while Register and Unregister
are dedicated to client management. Get starts a transaction. Commit or rollback en-
tries end the transaction. Pending Put or Get are executed only when no transaction is
running.

4.5 The LfP Runtime

The runtime provides a set of services to handle the Lf P semantics using primitives of
the target execution environment. The runtime provides the following services:

– Task management service deals with creation, synchronization and termination of
the tasks that handle the execution contract of classes and media (e.g. PumpTask in
Fig. 10). It is also a basis for implementing class monitors (e.g. PumpMonitor in
Fig. 10).

– Resource management service handles creation, initialization and destruction of
Lf P code elements (classes, media and binders instances).

– Registry service (in the meaning of Java-RMI [16]) stores global references to gen-
erated code units and runtime units at execution time. It is required for distributed
deployment when naming conventions have to be preserved over several adresses
spaces. This is the case when a prototype is deployed on two middlewares (e.g
CORBA and Ada/DSA).

Fig. 13 presents in the form of an UML class diagram the relationship between the
Lf P runtime and the application. This interaction model is inspired by RM-ODP [8].
The runtime contains three logical units dedicated to management:



A Model Based Development Approach for Distributed Embedded Systems 149

1

command

manages

0..*

0..*

manages

1

1

manages

Application Manager

Class
Instance

Media
Instance

Node
manager1

0..*

Local Manager

cooperate Binder
Object

interact

interact
Capsule
Manager1

0..*

cooperate

1

0..*

1

command 0..*
1

0..*

0..*

Local Manager

LfP runtime LfP application

Fig. 13. Relationship between the Lf P runtime and applications.

– The application manager handles initialization, termination and error management
for the application. It relies on node managers to supervise hosts specific tasks. The
Registry service is implemented in the application manager since it is used by all
the components of the application.

– Each node manager handles a partition of the application on a given node. It im-
plements process creation which is part of the runtime task management service.

– Each capsule manager handles instances of a given class or media within a given
partition. It supports both task and resources management services.

The runtime implementation depends upon the selected execution environments.
There are two types of execution conditions:

– Some applications focus on the use of thick execution environment such as CORBA,
Ada-DSA or JAVA-RMI. These environments offer sophisticated services such as
naming, dynamic remote creation of objects, etc.

– Other applications have critical time and/or memory constraints. They require thin
execution environment such as QNX [21]. Code generation also requires specific
strategies to minimize memory footprint or optimize execution time.

The runtime architecture presented in Fig. 13 is able to fit those two types of con-
straints with tolerable performances. The use of a thick execution environment is not
a problem since they support most of the functions required in Lf P. The runtime is
then minimal but relies on more complex services. The use of thin execution environ-
ments requires a more complex runtime that relies on very simple but efficient services.
However, it is possible to write most of the Lf P capabilities with respect to the require-
ments of embedded systems. For instance a partition may include a static scheduler that
handles instances of Lf P classes as threads taken from a pool whose size is fixed at
compilation time and yet be compatible with an interpretation of Fig. 13; then, many
components are reduced to very limited code.



150 Frédéric Gilliers, Fabrice Kordon, and Dan Regep

5 Conclusion

This paper presents a model based development approach for distributed applications.
It relies on Lf P, a notation to capture the behavioral semantics of such systems, and
serves as a basis for both formal verification and automatic code generation.

We consider that such an approach is a valuable extention to UML based design
methods. The combined approaches (UML for object-oriented design and Lf P for a
process-based implementation) offer a way to move from an object oriented design to
a communicating processes oriented implementation (which is more natural for dis-
tributed systems) and provides independence from middleware. Our approach also en-
ables the use of formal methods as described in [10].

We propose a mapping of Lf P concepts to a generic architecture that can be im-
plemented on top of various execution environments. This is a way to help engineers
to design and implement complex systems without getting into the often complex and
delicate task of using sophisticated middleware services.

Our generic architecture relies on a runtime that virtualizes the execution environ-
ment. This is of particular interest when the application executes on several hosts run-
ning different operating systems. Effort expended on the implementation of the runtime
on a given target architecture can be reused for future applications.

Future work aims to provide a set of coherent tools based on Lf P. This is the goal
of a project founded by RNTL (Réseau National des Technologies Logicielles, a french
label and founding provided by the government for cooperation between industry and
universities), dedicated to embedded distributed systems, that started in July 2003.

References

1. J. Abrial. The B-book. Cambridge University Press, 1995.
2. P. Bose. Automated translation of UML models of architectures for verification and sim-

ulation using SPIN. In Robert J. Hall and Ernst Tyugu, editors, 14th IEEE International
Conference on Automated Software Engineering, ASE’99. IEEE, 1999.

3. J. Corbett. Evaluating deadlock detection methods for concurrent software. Software Engi-
neering, 22(3):161–180, 1996.

4. B. Dobbing and A. Burns. The Ravenscar tasking profile for high integrity real-time pro-
grams. In Proceedings of SigAda’98, Washington, DC, USA, November 1998.

5. S. Gnesi, D. Latella, and M. Massink. Model checking uml statechart diagrams using jack.
In 4th IEEE International Symposium on High-Assurance Systems Engineering. IEEE, 1999.

6. D. Helmbold and D. Luckham. Debugging Ada tasking programs. IEEE Software, 2(2):47–
57, March 1985.

7. ISO. Information Technology – Programming Languages – Ada. ISO, February 1995.
ISO/IEC/ANSI 8652:1995.

8. ITU-T. Open Distributed Processing, X.901, X.902, X.903 and X.904 standard. Technical
report, ITU-T, 1997.

9. I. Khriss, M Elkoutbi, and R. Keller. Automating the Synthesis of UML StateChart Di-
agrams from Multiple Collaboration Diagrams. In Jean Bézivin and Pierre-Alain Muller,
editors, First International Workshop on The Unified Modeling Language, UML’98: Beyond
the Notation, volume 1618 of LNCS, pages 132–147. Springer-Verlag, 1999.



A Model Based Development Approach for Distributed Embedded Systems 151

10. F. Kordon, , I Mounier, E. Paviot-Adet, and D. Regep. Formal verification of embedded
distributed systems in a prototyping approach. In International Workshop on Engineering
Automation for Software Intensive System Integration, June 2001.

11. F. Kordon and Luqi. An introduction to rapid system prototyping. IEEE Transaction on
Software Engineering, 28(9):817–821, September 2002.

12. N. Leveson. Software engineering: Stretching the limits of complexity. Communications of
the ACM, 40(2):129–131, 1997.

13. Luqi and J. Goguen. Formal methods: Promises and problems. IEEE Software, 14(1):73–85,
January / February 1997.

14. S. Marc, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Ref-
erence. MIT Press, 1996.

15. N. Medvidovic and R. Taylor. A classification and comparison framework for software
architecture description languages. Software Engineering, 26(1):70–93, 2000.

16. SUN Microsystems. Java Remote Method Invocation (RMI), version 1.3. Technical report,
SUN, 2001.

17. OMG. The common object request broker: Architecture and specification, revision 2.2. Tech-
nical report, OMG, 1998.

18. OMG. Omg unified modeling language specification, version 1.3. Technical report, OMG,
1999.

19. OMG. Initial Submission to OMG RFP’s: ad/00-09-01 (UML 2.0 Infrastructure) ad/00-09-
03 (UML 2.0 OCL). Technical report, OMG, 2001.

20. OMG. Model Driven Architecture (MDA), Document number ormsc/2001-07-01. Technical
report, OMG, 2001.

21. QNX. System Architecture Guide - QNX RTOS v6, 2002.
22. D. Quartel, M. van Sinderen, and L. Ferreira Pires. A model-based approach to service cre-

ation. In 7th IEEE Computer Society Workshop on Future Trends of Distributed Computing
Systems, pages 102–110. IEEE Computer Society, 1999.

23. D. Regep and F. Kordon. Lf P: a specification language for rapid prototyping of concurrent
systems. In 12th IEEE International Workshop on Rapid System Prototyping, June 2001.

24. J. Zhao. A slicing-based approach to extracting reusable software architectures. In CSMR,
pages 215–223, 2000.


	1 Introduction
	2 Model Based Development
	3 The L$f$P Formalism
	4 Code Generation from L$f$P
	4.1 Architecture of the Generated Code
	4.2 Generating Code for Classes
	4.3 Generating Code for Media
	4.4 Generating Code for Binders
	4.5 The L$f$P Runtime

	5 Conclusion
	References

