
Towards Distributed Software Model-Checking
using Decision Diagrams⋆

(extended version with annexes)

Maximilien Colange1, Souheib Baarir2, Fabrice Kordon1, and Yann Thierry-Mieg1

1 LIP6, CNRS UMR 7606, Université P. & M. Curie – Paris 6
4, place Jussieu, F-75252 Paris Cedex 05, France

2 LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La Défense
200, avenue de la République, F-92001 Nanterre Cedex, France

first.last@lip6.fr

Abstract. Symbolic data structures such as Decision Diagrams have proved suc-
cessful for model-checking. For high-level specifications such as those used in
programming languages, especially when manipulating pointers or arrays, build-
ing and evaluating the transition is a challenging problem that limits wider appli-
cability of symbolic methods.
We propose a new symbolic algorithm,EquivSplit, allowing an efficient and fully
symbolic manipulation of transition relations on Data Decision Diagrams. It al-
lows to work with equivalence classes of states rather than individual states.
Experimental evidence on the concurrent software oriented benchmark BEEM
shows that this approach is competitive.

1 Introduction

Model-checking of concurrent software faces state space explosion. To address this is-
sue, many algorithms and data structures have been proposed, one of the most success-
ful being symbolic shared data structures such as Binary Decision Diagrams (BDD).

While BDD allow in many cases to cope with very large state spaces, expressing
algorithms symbolically to take full advantage of the data structure is tricky. Symbolic
evaluation algorithms that are aware of the data structure itself such as saturation-style
algorithms [6, 10] can be orders of magnitude better than naive evaluation in a breadth-
first search manner.

The transition relation of a system ofk boolean variables, can be seen as a function
B

k 7→ 2B
k

and is usually built and stored as a second decision diagramN, with two
variables “before” and “after” for each variable of the system. A specific operation
between any subset of the state spaceSencoded as a decision diagram and the transition
relationN yields a decision diagramS′ = N(S) representing immediate successors ofS.

Let us define statements as (sequences of) assignments of expressions to variables.
The support of a statement is the set of variables it reads or writes to. This notion of

⋆ This work has been supported by a grant from the Délégation Générale pour l’Armement and
by the project ImpRo/ANR-2010-BLAN-0317.

locality is heavily exploited, to limit the representationof transitions to the effect they
have on variables of their support. For each transition withk′ Boolean support variables,
worst case representation size is 2k′ . The symbolic approach was successfully applied

to Boolean gate logic where encoding theseB
k′ 7→ 2B

k′

transition matrices is feasible.

But because classical approaches compute potential to potential Bk′ 7→ 2B
k′

tran-
sition matrices, a larger support for transitions means exponential growth of the worst
case complexity in representation size. It also severely limits the possibilities of satura-
tion-based techniques as their efficiency relies in clusters based on the support of tran-
sitions. Hence, a worst case for classical symbolic approaches is when the support of
transitions includes all variables.

Moreover, when the input specification includes array or pointer manipulation, any
static analysis of statements will necessarily yield pessimistic support assumptions. For
instance, a non-constant array access such ast[i] maydepend on the variablet[0].
In classical approaches, pessimistic assumptions must include all elements of the array
t in the support. Such expressions are commonly encountered in modeling languages
such as Promela or Divine [11, 2].

We propose in this paper to perform a dynamic analysis of suchstatements as they
are being resolved, allowing to discover more locality in the remaining effects as expres-
sions are partially evaluated. This can avoid the problems induced by transitions with a
large syntactic support by only performing the computations that arereally necessary.
Our algorithm exploits locality to optimize its evaluation, as the support of expressions
may vary as the evaluation progresses.

In the dynamic case, when evaluatingt[i], as soon as the value of the index expres-
sioni has been reduced to a constant, pessimistic assumptions canbe forgotten and the
support is reduced to the effective cell of the array that is the target of the assignment.

To have efficient symbolic computations of these statements, we define an equiva-
lence relation over states with respect to the value of an expression; this induces equiv-
alence classes that can be built dynamically and manipulated symbolically. Intuitively,
if efficient manipulation of equivalence classes is possible, then the computation com-
plexity can be proportional to the number of such equivalence classes rather than to the
number of actual states.

We define in this paper a new decision diagram based operation, EquivSplit, that al-
lows to efficiently compute and manipulate such equivalenceclasses, in a way compat-
ible with the decision diagram encoding of states. Given a syntax treee for an arbitrary
expression, and a set of statesS encoded as a decision diagram, we provide an incre-
mental and on the fly algorithm to efficiently compute a partition of S= S0⊎S1⊎ . . .
where all states in aSi agree on the value ofe, and no two distinctSi , Sj agree on the
value ofe.

Outline. We first introduce notations for expressions and their (partial) evaluation. We
then recall the definition of Data Decision Diagrams (DDD)[9], as the type of integer
valued decision diagrams we use in our implementation. We then explain theEquivSplit
algorithm and how it is used to evaluate and resolve expressions on sets of values stored
as DDD. To assess the applicability of our approach in practice, we study in section 5
the efficiency of our approach for Divine models taken from a standard benchmark
(BEEM) and compare it to other symbolic approaches.

2 Expressions

We first define in 2.1 some concepts and introduce notations that will be used through-
out the paper. The abstract level of these definitions guarantees independence from any
concrete syntax. We give flesh to these definitions with more concrete examples in 2.2.

2.1 Definitions and notations

Let Σ be a signature, that is a set of symbols of finite arity. We inductively define the set
Expr of Σ-expressionsasφ ∈ Expr if and only if:

– φ ∈ Σ of arity 0,
– or φ = s(φ1, . . . ,φk) wheres∈ Σ is of arity k andφ1, . . . ,φk ∈ Expr (φi is called a

sub-expression).
Let D be a domain for expressions. We assume thatD is embedded inΣ, so that

every element of the domain can be referred to syntactically.

Definition 1. An interpretationI is a function that associates to every symbol s∈ Σ of
arity k > 0 a (possibly partial) function I(s) : Dk 7→ D, and that maps each symbol of
arity 0 to its corresponding element of D.

Intuitively, this formalism captures most programming languages, with pointers and
pointer arithmetic. From now on, we assume that there is a finite subsetX in D, called
addresses. The set of addressesX being finite, we noteX = {x1, . . . ,x|X|}. We assume
Σ contains a special symbolδ of arity 1, that allows to access a memory slot given
its address. Note that a variable is just a symbolic name for an address. Thus,I(δ)
represents the content of the memory that varies as the program runs. Since we focus
on the evolution of the content of the memory, all the interpretations considered from
now on are equal for the other symbols (i.e. the operational semantics for the symbols
of the language is known and fixed). Letµ= I(δ) designate avaluation, i.e. the state of
the memory.µ is seen as a (partial, when not all memory contents are known)function
from X into D. Since all other symbols have a fixed interpretation, an interpretationI
can be described by simply providingµ. Furthermore, all symbols interpretations must
be complete functions (only the valuation is allowed to be a partial function). Partial
interpretations can be completed by adding a special element to D and mapping the
undefined domain onto this special element. This special element corresponds to an
error or an undefined behavior. Note that the interpretations of all symbols must take
into account this new special element.

Definition 2. Given an interpretation I, an expressionφ = s(φ1, . . . ,φk) (k≥ 0) evalu-
atesor reducesto another expression eval(I ,φ) as follows:

eval(I ,φ) =

I(s) ∈ D if s is a symbol of arity0

I(s)(eval(I ,φ1), . . . ,eval(I ,φk)) ∈ D
if eval(I ,φi) ∈ D for all i and

I(s) is defined at this point

s(eval(I ,φ1), . . . ,eval(I ,φk)) otherwise.

If eval(I ,φ) ∈ D, the evaluation iscomplete.

Notation. We will now abusively denote the evaluationeval(I ,φ) whereI(δ) = µ
by eval(µ,φ). If ψ is a (possibly nested) sub-expression ofφ, φ[ψ← θ] denotes the
expression obtained by substituting the expressionθ to ψ in φ. Given a valuationµ and
a subset of addressesY ⊆ X, µ|Y denotes the restriction ofµ to Y. With these notations,
we have, for any variablex, any valuationµ wherex is defined, and any expressionφ:
φ[δ(x)← µ(x)] = eval(µ|{x},φ)

We now define an equivalence relation on valuations with respect to the evaluation
of an expression. In Section 4 this equivalence relation is akey notion, allowing efficient
evaluation of expressions on sets of valuations.

Definition 3. Given a subset Y of X and an expressionφ, for all valuations µ,µ′ we
define the equivalence relation∼Y

φ as follows:

µ∼Y
φ µ′⇔ eval(µ|Y,φ) = eval(µ′|Y,φ)

A trivial case of this equivalence is valuationsµ 6= µ′, that are equal onY.

2.2 Examples of Expressions

To help in visualizing these definitions, let us use as an example a language supporting
a C-like syntax. We give concrete examples here for each element defined abstractly
above. We consider a language supporting integers and theirmanipulation operators
(arithmetic+, -, * . . . as well as bitwise operations<<,>>,. . .). The set of considered
operators are part of the signatureΣ. The domainD is thus integers. TheΣ-expressions
are built by syntactic combinations of operators, and the literals 0 or 1 are also (terminal)
expressions (asD is embedded inΣ).

Then, by definition 1, we must provide an interpretation function I that gives the
semantics of all the operators which are used in expressions. The interpretation function
works with constants; for our example we should provide the integer output value for
each of the binary operators given two integers.

Consider now variables of the program "a,b,c". They are seenas symbolic names
and mapped to integers (memory addresses), for instance 0,1,2. The special operator
δ allows to read the value of such a variable, hence the expression a is interpreted as
δ(0). We add the notion of array of fixed sizetab, and access to a cell of an array using
tab[]. Again tab is a symbolic name for a variable mapped to an integer, for instance 3
that is the first memory slot occupied by the array. Thentab[e] wheree is an arbitrary
expression is a syntactic sugar forδ(3+e).

All operators should have complete interpretations:a/b must also be defined when
b = 0. For this purpose, one or more special constants can be introduced. For a given
language manipulating finite types, the definition of the interpretation of most symbols
is usually straightforward. We consider that the interpretation of all symbols exceptδ
is fixed throughout the computations. In other words we distinguish the code (all other
symbols from the signature) from the data, represented byI(δ), that may vary as the
computation progresses.

Definition 2 formalizes partial evaluation of expressions given an interpretation
function. For instance, supposeµonly gives the content of memory slot 0, sayµ(0)=12.

Let φ = add(δ(0),δ(1)) (usually noteda+ b). Theneval(µ,φ) = add(eval(µ,δ(0)),
eval(µ,δ(1))). We haveeval(µ,δ(0)) = I(δ)(0) = µ(0) = 12 . However, becauseµ is not
defined for address 1,eval(µ,δ(1)) = δ(1). Hence,eval(µ,φ) = add(12,δ(1)) (noted
12+b).

As an example for Definition 3, any twoµ, µ′ such thateval(µ,a+b) = eval(µ′,a+
b) are equivalent. For instance, if botha andb are inY, µ= (a← 0,b← 1),µ′ = (a←
1,b← 0) are equivalent. If onlya is in Y, µ andµ′ are not equivalent, since one yields
expression 0+b while the other yields 1+b.

3 Data Decision Diagrams (DDD) [9]

Let us now briefly recall important concepts of decision diagrams. The algorithm pre-
sented in this paper is valid for any type of shared decision diagram, such as BDD.
However, to more closely match our definition of expressions, we will consider here
Data Decision Diagrams, where the domain of variables isD rather thanB. This pro-
vides a natural representation for a set of valuations as a DDD.

Shared Decision Diagrams (DD) are a data structure to compactly represent sets.
There are many variants of decision diagrams used for model-checking, but they all
rely on the same underlying principles: nodes of the decision tree are unique in memory
thanks to a canonical representation; the number of paths through the diagram (states)
can be exponential in the representation size (nodes in the DD); equality of two sets can
be tested in constant time; using caches most operations manipulating a DD are poly-
nomial in the representation size; the effectiveness of theencoding strongly depends on
the chosen variable ordering [7].

In this paper we rely on Data Decision Diagrams (DDD, defined in [9]), which
extend classical BDD in two respects:1) variables are considered to have an integer
domain instead of a Boolean one, and,2) operations over DDD are encoded using ho-
momorphisms instead of the usual fashion where another decision diagram with two
variables per variable of the state signature is used.

A DDD is a data structure for representing a set of sequences of assignments of
the formx1 := v1;x2 := v2; . . . ;xn := vn, wherexi are variables andvi are values inD.
We assume a total order on variables such that all variables are always encountered in
the same order in an assignment sequence. The usual DDD definition makes weaker
assumptions on variable ordering, but these are out of the scope of this paper (see [9]).

We define the terminal1 to represent the empty assignment sequence, that termi-
nates any valid sequence, and0 to represent the empty set of assignment sequences.

Definition 4 (DDD). Let X be a set of variables ranging over domain D. The setD of
DDD is defined inductively by:
δ ∈D if either δ ∈ {0,1} or δ = 〈x,α〉 with x∈ X, andα : D→D is a mapping where
only a finite subset of D maps to other DDD than0.

By convention, edges that map to the DDD0 are not represented.

For instance, consider the DDD shown in figure 1. Each path in the DDD corre-
sponds to a sequence of assignments. In this work, we use DDD to represent valuations
of the memory, thus each assignment sequence represents a memory state.

x
1

1

x
2

x
3

x
2

x
3

1
2

3

2
3

1
1

Fig. 1. This DDD with domainD = N represents the set of sequences of assignments:{(x1 :=
2;x2 := 3;x3 := 1;),(x1 := 1;x2 := 1;x3 := 1;),(x1 := 1;x2 := 2;x3 := 3;)}.

Operations and Homomorphisms. DDD support standard set operations:∪, ∩, \.
The semantics of these operations are based on the sets of assignment sequences that
the DDD represent.

Basic and inductive homomorphisms are also introduced to define application spe-
cific operations. A detailed description of DDD homomorphisms can be found in [9].

Since in this paper we define new symbolic operations that arenot specific to DDD,
we omit further details on homomorphisms. From the implementation point of view,
all operations we define are embedded in homomorphisms. Thisallows the software
library to enable automatic rewritings that yield much better performances, such as the
saturation algorithm [10].

4 Evaluating expressions on DDD

In practice, a system’s state is a valuation of the state variables, and the behavior of the
system is described with expressions. When treating such a system using DDD arises
the need to evaluate an expression over asetof valuations.

More precisely, given an expressionφ and a set of valuationsV, one needs to com-
pute all the evaluations ofφ by the valuations inV. To achieve this goal efficiently, we
rely on equivalence relation∼X

φ of definition 3.
Recall that the size of a DDD is often logarithmic in the size of the represented set.

The naive approach considers each valuation separately, ending up with a complexity
linear in the size of the input set. An efficient solution to this problem should use func-
tions that manipulate the nodes of the data structure representation, so that thanks to
caches, the complexity remains proportional to the encoding size.

We propose an algorithm,EquivSplit, that partitions a set of valuations (given as
a DDD) into equivalence classes with respect to∼X

φ . It visits variables in the order
given by the DDD, and progressively evaluates the expression. Hence it must work
with partial valuations and partially evaluated expressions.

We first define in section 4.1 the notion of dependency on an address, and how to
resolve such dependencies to ensure proper recursion. We then present our algorithm
in a restricted case to help comprehension in section 4.2. Itis extended to the general
case, by introducing another functionSolveSubin section 4.3. The correction and the
complexity of these functions are discussed in section 4.4.

4.1 Support of expressions

The support of an expression is the set of memory addresses necessary to completely
evaluate this expression. Conversely, an expression does not depend on an address if

its content does not affect its evaluation. We formally define these notions, and then
explain how to partially evaluate an expression until dependencies on a given address
are eliminated.

Definition 5. An expressionφ does not dependon an address x if and only if:

∀µ,µ′ ∈ DX,µ|X\{x} = µ′|X\{x} =⇒ eval(µ,φ) = eval(µ′,φ)

Thesupportof an expressionφ is the set of addresses on whichφ depends.
An expression that depends on no variable is said to beconstant.

Lemma 1. If φ is an expression that depends on x, then there exist a sub-expression
δ(ψ) of φ and a valuation µ such that eval(µ,ψ) = x.
ψ is called an x-expression ofφ.

Proof. We prove the contraposition. Letφ be an expression such that for all its sub-
expressions of the formδ(ψ), there is no valuationµ such thateval(µ,ψ) = x. Let
now µ andµ′ be two valuations that agree onX \ {x}. By structural induction onφ,
eval(µ,φ) (resp.eval(µ′,φ)) does not depend on the value ofµ(x) (resp.µ′(x)). Hence,
eval(µ,φ) = eval(µ′,φ) and we conclude thatφ does not depend onx. ⊓⊔

Lemma 2. If φ contains no nestedδ operator, then x is not in the support ofψ =
eval(µ|{x},φ) for all valuations µ and addresses x. The converse is not true.

Proof. We also prove this lemma by contraposition. Assume there exists aµ such that
ψ has anx-expressionψ′. There exists anx-expressionφ′ of φ such thateval(µ|{x},φ′) =
ψ′. If ψ′ were constant, then, according to definition 2,ψ′ would be inD, and since it
is anx-expression,ψ′ would necessarily be equal tox. Thus, according to definition 2,
δ(φ′) would be replaced byµ(ψ′) = µ(x) in ψ, so thatψ′ would not be a sub-expression
of ψ. This is contradictory, and proves thatψ′ is not constant.
ψ′ thus depends on at least an addressy∈ X, and, according to lemma 1, contains an
occurrence ofδ. It implies thatφ′ also contains an occurrence ofδ, showing thatφ
contains nestedδ operators.

Let+ denote any binary symbol inΣ. If φ= δ(δ(x)+δ(y)) andµ(x)+µ(y) = x, then
δ(µ(x)+δ(y)) still depends onx. This counter-example to the converse implication can
be extended to a symbol of any arityn≥ 2, in caseΣ contains no binary symbol. ⊓⊔

When there are nestedδ operators, Lemma 2 states that substituting the content of an
addressx in φ, as section 4.2 naively does, may not completely remove the dependence
onx. However, we can reduce this general case to the previous oneby recursively solv-
ing nestedx-expressions. This procedure terminates since each iteration strictly reduces
the number of nestedδ operators. This is discussed in section 4.3 and the correctness in
section 4.4.

4.2 Without nestedδ operators

The algorithmEquivSplit is shown in Algo. 1. It builds equivalence classes for∼X
φ

dynamically based on successive substitution, refinement and merge steps on a partition
of the input set. At stepi:

– the substitution step uses the partition according to all possible contents of current
addressxi (directly provided by the DDD encoding of valuations), to evaluateφ
with each of these values;

– the refinement step refines the partition by recursively evaluating the reduced ex-
pressions over addressesxi+1, . . . ,x|X|;

– the merge step merges cells of the partition that lead to the same reduced expression
over addressesxi , . . . ,x|X|.
At each stepi, the goal becomes to remove any dependencies onxi from the expres-

sionφ, allowing recursion overxi+1, . . . ,x|X|.
This algorithm is mutually recursive withSolveSubinvoked on line 8. To help com-

prehension, we first consider the restricted case where no nestedδ occur. In such a case,
SolveSub(φ,V, i) always returns the singleton{(φ,V)}. Hence, we study in this section
the Algo. 1 independently from the algorithm ofSolveSubpresented in section 4.3.

From a programming language point of view, forbidding nested δ operators means
that all addresses are known at compile time, and that no arithmetic on pointers occurs.
By lemma 2, this restriction implies that ifφ is an expression,x an address andµ a
valuation, onceφ is reduced withµ(x), it no longer depends onx.

Algorithm 1: EquivSplit(φ,V,i)
Input : φ an expression that does not depend onx1, . . . ,xi−1
Input : V a finite set of valuations
Input : i an integer between 1 and|X|+1
Output : a set of pairs{(φ1,c1), . . . ,(φn,cn)} such thatc1, . . . ,cn are the equivalence

classes of∼{xi ,...xn}
φ overV, and for each 1≤ j ≤ n, φ j = eval(µ|{xi ,...xn},φ) for

anyµ∈ c j .
1 if φ is constantthen
2 return {(V,φ)}
3 else
4 map< Expr,2V > res
5 let αd = {µ∈V|µ(xi) = d} for d ∈ D
6 foreach αd 6= /0 do

// Substitution
7 θ = φ[δ(xi)← d]

// to remove nested δ operators
8 for (ψ,c) ∈ SolveSub(θ,αd, i) do

// Refinement
9 for (ψ′,c′) ∈ EquivSplit(ψ,c, i+1) do

// Merge
10 res[ψ′] = res[ψ′]∪c′

11 return res

The base case of the recursion is whenφ is constant, hence∼Yi
φ has a single equiva-

lence classV (lines 1-2). Ifi = |X|+1, by the precondition on the inputφ, φ is constant.

The sets(αd)d∈D partitionV into equivalence classes with respect to the valued of
xi (lines 5-6). Note that the symbolic encoding of valuations as DDD naturally provides
this partition.

To each classαd, we associate a reduced expressionθ by replacing inφ variablexi

by its valued (line 7). Under our simplifying assumption,θ no longer depends onxi ,
andSolveSub(θ,αd, i) = {(θ,αd)}. Thus, the loop on line 8 is reduced to a single call
to line 9, that becomes: “(ψ′,c′) ∈ EquivSplit(θ,αd, i +1)”.

The loop on line 9 refines the partition elementαd (c in the general case) by re-
cursively evaluatingθ (ψ in the general case) on subsequent addresses (xi+1, . . . ,x|X|).
Since elements from differentαd’s may yield the same final value forφ, line 10 merges

them into the final partition into equivalence classes for∼
{xi ,...,x|X|}
φ .

Invoking EquivSplit(φ,V,0) returns the equivalence classes of elements in V with
respect to∼X

φ .

4.3 With nestedδ operators

We now extend our algorithm to the general case. The precondition on the inputφ
for Algo. 1 is thatφ does not depend onx1, . . . ,xi−1. Hence, recursion on line 9 re-
quires thatψ does not depend onx1, . . . ,xi . The algorithmSolveSubaddresses this
problem by reducingxi-expressions inθ by looking ahead the values of subsequent
addressesxi+1, . . . ,x|X|. Lemma 2 shows that with no nestedδ, looking zero addresses
ahead suffices to eliminate the dependencies, and falls backto the case of 4.2. The algo-
rithm SolveSubperforms this reduction using the look-ahead, and returns aset of pairs
{(φ1,c1), . . . ,(φn,cn)} such thatc j are sets of valuations that agree on a look-ahead
reductionφ j of θ and that do not depend onxi .

SolveSubcomputes inresa partition ofV, and associates to each cell a simplified
expression obtained by partially resolvingφ, until all dependencies onxi are removed.
tmp is initialized as a single cell associated toφ (line 3). At each step of the while
loop (line 4-5), an element(ψ,c) of tmp is treated. If the current expressionψ does
not depend onxi , the pair is moved tores (lines 11-12). Otherwise, we letθ be anxi-
expression ofψ (line 7). Recall, by lemma 1, that such aθ exists and has less nested
δ operators thanψ. Any x-expression can be chosen and will lead to a correct result,
hence the algorithm has some latitude at this point. Heuristically, to favor merging of
partially resolved expressions, it is desirable to first treatx-expressions with a small co-
domain (e.g. solve boolean sub-expressions first). Note that this is only possible with
some additional knowledge of the signature’s interpretation.

Recursion by invokingEquivSplitwith θ (line 8) refines the cellc according to the
value ofθ. To each of these refined cells is associated the reduction ofψ obtained by
substitutingθ by its value (line 9). They are then added totmp that merges the cells
according to the reduced expressionψ′ (line 11).

4.4 Correctness and complexity

Sketch of the proof of correctness.We give here some intuition about the correctness of
both algorithms.

Algorithm 2: SolveSub(φ,V,i)
Input : φ an expression that does not depend onx1, . . . ,xi−1
Input : V a set of valuations that all agree on the valued of xi
Input : i an integer between 1 and|X|
Output : a set of pairs{(φ1,c1), . . . ,(φn,cn)} such thatc1, . . . ,cn is a partition ofV, and

for each 1≤ j ≤ n, φ j is a reduced expression obtained by removing all
dependencies onxi from φ, and all valuations inc j agree on this reductionφ j

1 map< Expr,2V > res
2 map< Expr,2V > tmp
3 tmp[φ] =V
4 while tmp is not emptydo
5 (ψ,c) = tmp.pop()
6 if ψ has an xi-expressionthen
7 θ = anxi-expression ofψ
8 for (θ′,c′) ∈ EquivSplit(θ,c, i) do
9 ψ′ = ψ[θ← θ′]

10 ψ′ = ψ′[δ(xi)← d]
11 tmp[ψ′] = tmp[ψ′]∪c′

12 else
// ψ does not depend on xi

13 res[ψ] = res[ψ]∪c

14 return res

The recursive call on line 9 inEquivSplitat stepi uses parameteri +1; sincei is
bounded by|X|+1 (height of the decision diagram), this recursion terminates.SolveSub
recursively solves strict sub-expressions ofφ, hence the recursion is bounded by the
height of the syntactic tree. Since calls toEquivSplit from SolveSubalways concern
strictly smaller expressions, the mutual recursion is alsobounded.

Both algorithms work by successively refining and coarsening a partition of the
input set. Any time a pair(ψ,c) is inserted into the output,ψ is obtained by evaluating
φ (or a derivative) on elements ofc. Since the output is stored in a map, merging cells
(ψ,c) and(ψ′,c′) respects the constraint thatψ = ψ′, hencec andc′ belong to the same
equivalence class.

The full proof is presented as an appendix.
Complexity of EquivSplit. In Algorithm 1, theαd’s for the loop on line 6 are already
provided by the DDD representation of valuations, so that this loop is a just a walk of
already computed sets. The main source of complexity in thisfunction lies in the call
to SolveSub. In the case whenφ has no nestedδ operators, then the loop on line 8 has
a single pass. The recursion on line 9 explores the subsequent part of the DDD, so that,
using a cache, the total complexity ofEquivSplitis related to the size of the input DDD,
rather than to the size ofV.
Complexity of SolveSub. The look-ahead ofSolveSub, performed on line 8 of func-
tion 2, refines theαd in input. This refinement (that builds new decision diagrams) can
be arbitrarily fine, and depends on the input expression and the input set of valuations.

The overall complexity ofSolveSubis thus hard to predict and depends on the number
of equivalence classes built.

A worst case for our technique would be an expression computing a hash value
based on the values in all the memory slots. A perfect hash function would yield equiv-
alence classes limited to singletons, hence encountering exponential worst case com-
plexity (linear over states contained). Conversely, expressions with a small codomain
(such as boolean expressions) give a small bound on the maximum number of equiv-
alence classes manipulated by the algorithm. A peak effect for symbolic techniques
occurs when an intermediate DDD size is proportional to its set size. This may occur
anytime a partition element is built, hence finer partitionsare more likely to induce a
peak effect.
Caches.A cache forEquivSplit is built by associating to each〈DDD, expression〉
pair the set {〈DDD, expression value〉} that partitions the input DDD into equivalence
classes for the input expression. The full evaluation of various statements may thus
share the cache allowing computation of common sub-expressions. Because it contains
partial evaluations results, and no specific attempt is madeto reconcile combined re-
sults, the structure of this cache differs from a decision diagram representing the full
effects of transitions, although it allows to reconstruct the same transition information.
Variable Order. Much of the complexity for both of these algorithms depends on the
variable ordering used in the DDD encoding. The equivalenceclasses depend on the
order in whichxi ’s are visited. The representation size of the equivalence classes also
strongly depends on this order. Heuristically, orderings that minimize invocations to
SolveSubreduce the complexity. Limiting the depth of the look-aheadmechanism also
helps to build DDD that share existing suffixes.

In our experiments, we adapted the FORCE algorithm [1]. Given a directed hy-
pergraph where weighted edges represent constraints on variables (nodes of the hyper-
graph), FORCE heuristically computes an ordering on variables that minimizes the total
weight. Expressions induce constraints on the variables intheir support. By assigning
a strong weight to constraints implying invocations toSolveSub, and small weight to
constraints enforcing locality, we obtained satisfactoryresults.

4.5 Evaluating assignments

We now informally present how to use our new algorithms to handle assignments of
expressions to memory slots. We consider a semantic of a software system is described
as sequences of assignments. An assignment is a pair of expressions(φ,ψ), whereφ
denotes the address of the affected memory slot andψ the new value to assign to it.
Allowing φ to depend on current memory state allows to model assignments such as
t[i] := 0.

In our DDD implementation, an assignment is encoded as a homomorphismD 7→D.
It evaluates bothφ andψ by walking the input DDD. As variables are encountered,φ
andψ are partially evaluated. If dependencies on current variable are not eliminated
(nestedδ), SolveSubis invoked. At some point,φ is reduced to a constant, which is the
target of the assignment. When this target is reached,ψ must then be evaluated to a
constant which may involve a look ahead usingSolveSub.

Since our assignments are encoded as homomorphisms, they benefit from the au-
tomatic rewriting rules of [10]. These rules use the supportof the expressions to skip
don’t-care variables and build clusters of transition effects. Our algorithm can also be
implemented within other DD libraries. However, using DDD and homomorphisms al-
lowed us to immediately benefit from these features.

5 Assessment

We compare our approach to related work and assess its efficiency compared to other
symbolic techniques.

5.1 Related work

To encode a transition, the original symbolic approach [5] relies on a second set of
variables that associates to each variable its new state after the transition, for all poten-
tial states. The global transition relation is then the monolithic union (logical or of be-
haviours) of all possible transitions. This monolithic approach matches the synchronous
semantics of hardware systems, but yields intractable representations in many cases.

This forced to introduce new strategies [13], where an explicitly managed set of
DD store conjuncts of the transition relation. This process, called transition clustering,
allows to overcome some of the limits of the monolithic approach.

For Globally Asynchronous Locally Synchronous (GALS) systems, [6], proposes
to design the clustering according to the top-most variablein transition supports. The
semantics of such systems is given as an asynchronous interleaving of locally syn-
chronous actions (e.g. Petri nets). Such a clustering allows saturationto optimize the
evaluation of the least fixpoint of a set of conjuncts: based on the interleaving semantics
of the conjuncts, the fixpoint is first computed on lower partsof the DD.

A similar formalism is proposed by LTSmin [4]. A system is defined as consisting
of k state variables with a discrete domainD and of transitions described primarily by
their support composed ofk′ ≤ k variables. To compute the state space, LTSmin relies
on third-party existing explicit model-checkers that provide a computation procedure
called for each encountered value of the support in the global state space. Thanks to
this projection, the number of these calls is bounded byDk′ and in practice is lim-
ited to actually encountered states. This tool also implements state-of-the-art symbolic
techniques, such as saturation, using classical encoding with two "before" and "after"
variables per system state variable.

This approach is however severely challenged when the support grows. If the high-
level model features array manipulation, pessimistic assumptions on the supports end
up with supports including most (if not all) state variables. In such an extreme case,
the explicit engine is invoked at least once for each state, negating any possible gain
from the use of DD. Additionally, such individual insertionof paths in a DD is liable
to produce exponential memory peak effects. Large supportsalso severely limit the
possibilities of saturation as clusters are based on the support of transitions.

The algorithms we present in this paper partly overcome these difficulties. Large
supports are often the result of array manipulation or composition of local effects in-
duced by sequences of assignments. As we have seen, the support of an expression is

dynamically reduced. Large potential supports due to arraymanipulations are correctly
resolved on-the-fly byEquivSplit. Compositions of effects are managed as explicit com-
position of homomorphisms, each of which has a support defined by its underlying
expressions. Our fully symbolic encoding of the expressions avoids any explicit step
where states are individually considered in the model-checking algorithm.

5.2 Implementation

To assess our algorithms, we chose to use benchmark models from the BEEM data-
base [12], that are written in the Divine language [2]. To this end, we defined an inter-
mediate formalism called Guarded-Action Language (GAL)3, that can be manipulated
symbolically with the algorithms described in this paper. This formalism defines a sys-
tem’s memoryµ using integer variables and fixed size arrays of integers. Its transitions
are composed of a guard that is a boolean expression over variables and a sequence of
statements that are assignments of expressions to variables (or to cells of an array). A
state of a GAL system is defined as the valuation of all variables. A transition is enabled
in any state where the guard is true. Firing an enabled transition yields in a single step
the successor state obtained by executing the assignments of the transition in an atomic
sequence. The semantics are thus globally asynchronous, but sequences of statements
are locally synchronous, reflecting the semantics of concurrent systems.

This small formalism offers a rich signatureΣ consisting of all C operators for
manipulation of theint data type and of arrays (including nested array expressions).
There is no explicit support for pointers, though they can besimulated with an array
heapand indexes into it. It also supports full C-like boolean expressions.

With these features, translation of Divine models into GAL was relatively straight-
forward. This technical work was done by adapting the code ofLTSmin’s wrapper for
Divine models, where the semantic bridge to a system based oninteger variables al-
ready existed. Divine is a language for describing processes that communicate through
bounded channels, shared variables and/or synchronization. Channels are modeled us-
ing arrays. Synchronizations use a conjunction of local condition as a guard, and a
sequence of local effects on each process as action. Priorities (deriving from the "com-
mit" semantics of Divine) are enforced by adding the negation of the disjunction of the
guards of higher priority to guards of transitions with lower priority.

5.3 Performance Assessment

To assess our new technique we built an extension to thelibits tool4, and com-
pared its performance to classical state-of-the-art approaches, represented by the tools
LTSmin [4], super_prove [3]. The performance comparison is based on the full set
of models from the BEEM database [12]. Here we only report on reachability proper-
ties that were also provided in the context of a recent hardware model checking con-
test (HWMCC’125) as SAT instances. Our implementation supports full CTL andLTL

3 http://move.lip6.fr/software/DDD/gal.php
4 http://ddd.lip6.fr
5 http://fmv.jku.at/hwmcc12

 10000

 100000

 1e+06

 1e+07

 10000 100000 1e+06 1e+07

lib
its

 m
em

 (
kb

)

LTSmin mem (kb)

(a) comparison on peak memory

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

lib
its

 ti
m

e
(s

)

LTSmin time (s)

(b) comparison on time

Fig. 2.libits vs LTSmin, same variable ordering

model-checking of Divine models. All experiments were run on a Xeon 64 bits at 2.6
GHz processor.

LTSmin is a tool suite for model-checking, that implements state-of-the-art symbolic
techniques (see 5.1). It can use several third-party DD libraries, but we configured it
to use DDD to allow easier algorithmic comparison. Indeed the state encoding being
provided by the same DDD library as ours, the main differencebetween this tool and
ours is the use ofEquivSplit.

super_prove is a SAT based model-checker. It was the winner of the “singlesafety/
bad-state property” track of the HWMCC’12, that contains theBEEM models. It is thus,
to our knowledge, the best SAT-solver for this particular benchmark. SAT techniques
are very different from those discussed in this paper, but raw performance comparisons
on this benchmark are still possible.

libits is a DD-based verification library that uses both hierarchical set decision di-
agrams and DDD to support model-checking (CTL, LTL) of composition of labeled
transition systems described symbolically. Transition systems can be described using
several input formalisms, such as labeled discrete time Petri nets. The GAL formalism
was embedded in this framework but only uses DDD.

Detailed results of experiments are presented as scatter plots comparing two tools
over the whole benchmark. Each point represents a (model,formula) pair that was tested
for reachability with both tools. A point below the diagonalmeans thatlibits is more
efficient than the other tool. Our plots use a logarithmic scale. Lines parallel to the
diagonal represent performance ratios of 10, 100 . . . (resp.0.1, 0.01 . . .).

models testedtreated by libitstreated by LTSmintreated by bothtreated by none
293 264 212 197 22

Table 1.libits vs LTSmin

libits vs. LTSmin. We compare the performance for the generation of the state
space of the models, with 1 hour and 10Gb containment. Statistics of the results are
shown in Fig. 1, and more detailed results are shown on Fig. 2.The results confirm that
ourEquivSplitalgorithm performs better than the classical symbolic approach. With the
same implementation of DDD and the same variable ordering, our implementation is up
to 1000 times faster and 100 times less memory consuming thanLTSmin. For a dozen
models, LTSmin is slightly more memory efficient than libits, but this can be attributed
to side-effects of the garbage collection policy.
libits vs.super_prove. We compare the performance of bothlibits andsu-
per_prove, with a containment of 1Gb in memory and 900 seconds wall clock time
(super_prove uses 4 cores whilelibits is mono-threaded). These are the contain-
ment settings used in the HWMCC competition. Summary of the results are shown in
Fig 4, and detailed results are presented on Fig. 3. We only compared the time usage,
since the memory consumption for SAT techniques is usually insignificant. Note that
all libits’s fails are due to a memory overflow, whereas allsuper_prove’s fails are
due to a time overflow.

libits treats about 35% more models thansuper_prove. Also,libits is quicker
thansuper_prove for 80% of the models treated by both tools, with a speed-up factor
up to 1000. On the other models,super_prove’s speed-up factor ranges up to 100.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

its
 ti

m
e

(s
)

sup time (s)

Fig. 3. Time comparison betweenlibits
andsuper_prove

unsatmean time# satmean time
unsat unsat (s) # sat sat (s)

libits 184 14.6 192 8.6
super_prove 112 140.6 170 45.1

models treated treated by treated treated
tested by libits super_prove by bothby none
456 376 282 258 56

Fig. 4. libits vs super_prove (top: mean runtime
and bottom: number of instances solved)

The top table in Fig. 4 shows thatlibits runs on average 5 times faster on satisfied
properties and 10 times faster on unsatisfied properties than super_prove that stops
as soon as it finds a solution for satisfied instances. Our toolregularly interrupts the
computation to check whether a solution exists in the statescomputed so far. When
these checks are deactivated,libits is 4 times faster on satisfied properties and 14
times faster on unsatisfied properties. Unsatisfied instances require both tools to explore
the whole reachability graph: these are the hardest problems.

On this benchmark, we show that state-of-the-art symbolic manipulation of decision
diagrams can still outperform the best SAT-based techniques.

6 Conclusion

This paper proposes a new algorithm,EquivSplit, that allows more efficient symbolic
manipulation of software-like models. It uses equivalencerelations to avoid explicit
manipulation of states. Assessment on a large third-party benchmark shows that this
approach improves existing decision diagram-based techniques, and can outperform
SAT-based ones.

Our algorithm supports arbitrary signatures (languages),and can be used with any
type of decision diagrams. It uses information provided by the high-level expressions
of the transition relation to dynamically optimize computations.

Using theEquivSplitalgorithm, we are currently investigating the combinationof
symmetries with decision diagrams as an extension of previous work performed without
this contribution [8].

References

1. Aloul, F., Markov, I., Sakallah, K.: Force: a fast and easy-to-implement variable-ordering
heuristic. In: 13th ACM Great Lakes symposium on VLSI. pp. 116–119. ACM (2003)

2. Barnat, J., Brim, L.,Češka, M., Rǒckai, P.: DiVinE: Parallel Distributed Model Checker
(Tool paper). In: Parallel and Distributed Methods in Verification and High Performance
Computational Systems Biology (HiBi/PDMC). pp. 4–7. IEEE (2010)

3. Berkeley Logic Synthesis and Verification Group: ABC: A System for Sequential Synthesis
and Verification, Release 12/10/06,http://www.eecs.berkeley.edu/~alanmi/abc/

4. Blom, S., van de Pol, J., Weber, M.: Ltsmin: Distributed and symbolic reachability. In: Com-
puter Aided Verification. pp. 354–359. Springer (2010)

5. Burch, J., Clarke, E., et al.: Symbolic model checking: 1020 States and beyond. Information
and computation 98(2), 142–170 (1992)

6. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound.Tools and Algorithms for
the Construction and Analysis of Systems pp. 379–393 (2003)

7. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge, MA, USA
(1999)

8. Colange, M., Kordon, F., Thierry-Mieg, Y., Baarir, S.: State Space Analysis using Symme-
tries on Decision Diagrams. In: 12th International Conference on Application of Concur-
rency to System Design (ACSD). pp. 164–172. IEEE Computer Society (Jun 2012)

9. Couvreur, J., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.: Data decision
diagrams for petri net analysis. Application and Theory of Petri Nets pp. 129–158 (2002)

10. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical set decision diagrams and automatic
saturation. Applications and Theory of Petri Nets pp. 211–230 (2008)

11. Holzmann, G.J.: The model checker spin. IEEE Transactions onSoftware Engineering 23,
279–295 (1997)

12. Pelánek, R.: Beem: Benchmarks for explicit model checkers. In: Model Checking Software,
14th Int’l SPIN Workshop. LNCS, vol. 4595, pp. 263–267. Springer(2007)

13. Ranjan, R., Aziz, A., Brayton, R., Plessier, B., Pixley, C.: Efficient bdd algorithms for fsm
synthesis and verification. IWLS95, Lake Tahoe, CA 253, 254 (1995)

A Proofs of correctness

To prove the correctness of our algorithms, we need some additional definitions and
notations.

Definitions and notations.For 1≤ i ≤ |X|+1,Yi = {xi , . . . ,x|X|}.
We define an order over the expressions for induction on expressions in the proof.

Definition 6. Let φ andψ be two expressions.φ < ψ if and only ifφ has less symbols
thanψ.

Definition 7. Let x∈ X. We define the equivalence relation≀x over valuations as:

µ≀x µ′⇔ µ(x) = µ′(x)

Definition 8. Let µ be a valuation, x be an address,φ andφ′ two expressions.
We defineφ x,µ φ′ if and only if one of the following conditions holds:

– φ′= φ[ψ← eval(µ,ψ)], whereψ is an x-expression ofφ whose support is not empty;
– φ contains at least one constant x-expression andφ′ = eval(µ|{x},φ).

∗
x,µ denotes the reflexive and transitive closure of x,µ. It is easy to see that if

φ x,µ φ′, then the number of occurrences ofδ in φ′ is strictly less than inφ. Therefore,
there is no infinite sequenceφ x,µ φ1 x,µ . . . , and thus, for any expressionφ, there
exists an expressionφ′ that does not depend onx such thatφ ∗x,µ φ′.
We now choose a deterministic criterion for choosing thex-expressionψ in the first case
of definition 8. For example,ψ is the firstx-expression encountered during a depth-first
walk of the syntactic tree ofφ. This ensures the uniqueness of the aboveφ′: for any
expressionφ, there exists a unique expression, denoted bynorm(µ,x,φ) that does not
depend onx and such thatφ ∗x,µ norm(µ,x,φ).
norm(µ,x,φ) is computable by repeatedly evaluating thex-expressions ofφ chosen ac-
cording to this criterion.

Definition 9. Given an expressionφ, we define the equivalence relation≡x
φ over valu-

ations as follows:
µ≡x

φ µ′⇔ norm(φ,x,µ) = norm(φ,x,µ′)

Note that the choice of the criterion to pick anx-expression ofφ influences the struc-
ture of the equivalence classes of≡x

φ. This does not affect correctness of the algorithms,
but may impact their complexities, as already mentioned in 4.3.

Lemma 3. Let φ be an expression, µ be a valuation and x be an address.

eval(µ,norm(µ,x,φ)) = eval(µ,φ)

Proof. Let us consider the relation µ= ∪y∈X y,µ. If φ µ φ′, then the number of
occurrences ofδ in φ′ is strictly less than inφ. Therefore, there is no infinite sequence
φ µ φ1 µ . . . , and there exists an expressionφ′ that depends on no variable and such
that φ ∗µ φ′. It is easy to see thatφ′ = eval(µ,φ). Therefore, sinceeval(µ,φ) is well-
defined,φ′ is unique, and does not depend on the path leading fromφ to φ′.

Similarly, φ′′ = eval(µ,norm(µ,x,φ)) depends on no variable andnorm(µ,x,φ) ∗µ
φ′′. Since x,µ⊆ µ, we haveφ ∗µ norm(µ,x,φ) ∗µ φ′′. By unicity of φ′, we conclude
thatφ′ = φ′′, henceeval(µ,norm(µ,x,φ)) = eval(µ,φ).

Correctness of the algorithms.We prove the correctness of bothEquivSplitandSolveSub,
using a double induction on parametersi andφ.

EquivSplit(φ,V, i) returns a set of couples{(φ1,c1), . . . ,(φn,cn)} such thatc1, . . . ,cn

are the equivalence classes of∼Yi
φ on V, andφ j = eval(µ,φ) for any µ∈ c j , provided

thatφ does not depend onx1, . . . ,xi−1.
SolveSub(φ,V, i) returns a set of couples{(φ1,c1), . . . ,(φn,cn)} such thatc1, . . . ,cn

are the equivalence classes of≡xi
φ onV, andφ j = norm(µ,xi ,φ) for anyµ∈ c j , provided

that φ does not depend onx1, . . . ,xi−1. Note that all elements inV must agree on the
value ofxi : V must be contained in an equivalence class of≀xi .

Induction on i. If i = |X|+1, then any expressionφ that does not depend onx1, . . . ,x|X|
is constant. Then both∼Yi

φ and≡xi
φ are trivial. Furthermore,eval(µ,φ)= φ andnorm(µ,xi ,φ)=

φ for all valuationsµ. EquivSplit(φ,V, i) andSolveSub(φ,V, i) both return the singleton
{(φ,V)}, ensuring their correctness.

Let 1≤ i≤ |X|. Let us assume that bothEquivSplit(ψ,V, i+1) andSolveSub(ψ,V, i+
1) are correct for any setV and expressionψ. We prove, by structural induction onφ,
thatEquivSplit(φ,V, i) andSolveSub(φ,V, i) are correct.

Induction onφ. Let φ be an expression. Ifφ is a single symbol, it is a constant ex-
pression, and the conclusion is the same as above for the basecase of the induction on
i.

Let us now suppose thatφ is not reduced to a single symbol, and that (induction
hypothesis)EquivSplit(ψ,V, i) is correct for allV andψ < φ, andSolveSub(ψ,V, i) is
correct for allV andψ < φ. We first prove thatSolveSub(φ,V, i) is correct, then that
EquivSplit(φ,V, i) is correct.

SolveSubis based on a while loop, that has three invariants, that we prove:

∀(ψ,c) ∈ tmp,∀µ∈ c,φ ∗xi ,µ ψ (1)

∀(ψ,c) ∈ res,∀µ∈ c,ψ = norm(µ,xi ,φ) (2)

all the sets stored intmpandres form a partition ofV (3)

These conditions are obviously true when entering the loop for the first time (ini-
tializations of lines 1−3).
When entering the loop, a couple(ψ,c) is first removed fromtmp (line 5). By (1),
φ ∗xi ,µ ψ for all µ∈ c.
If ψ has nox-expression, thenψ is in normal form andψ = norm(µ,xi ,φ) for all µ∈ c.
Thus, adding(ψ,c) to respreserves all three invariants (lines 12−13).
Otherwise, the algorithm picks anxi-expressionθ in ψ (line 7). θ is a proper sub-
expression ofψ, and, sinceψ does not depend onx1, . . . ,xi−1, neither doesθ. Thus,
by induction hypothesis,EquivSplit(θ,c, i) is correct. Therefore, on line 8,c′ is an
equivalence class for∼Yi

θ on c andθ′ = eval(µ|Yi
,θ) for anyµ∈ c′. Thus,ψ′ = ψ[θ←

eval(µ|Yi
,θ)] for µ∈ c′ is well-defined onc′ (line 9). Furthermore, since all valuations in

V agree onxi , thenψ′ = eval(µ|{xi},ψ[θ← eval(µ|Yi
,θ)]) is also well-defined onc′ (line

10). Furthermore,ψ xi ,µ ψ′ or ψ 2
xi ,µ ψ′, and thusφ ∗xi ,µ ψ′ for all µ∈ c′. Since the

equivalence classes of∼X
θ partition c, adding such pairs(ψ′,c′) to tmp preserves the

three invariants.
Sinceψ +

xi ,µ ψ′, ψ′ is strictly closer to any of its normal forms thanψ. This ensures
termination of the loop.
Finally, the loop ends whentmp is empty. Thus, by (3), the sets stores inrespartition
V, and using (2), we conclude thatrescontains exactly the equivalence classes of≡xi

φ
onV.

We now prove thatEquivSplit(φ,v, i) is correct. It is based on three nested loops.
The innermost loop has two invariants, that we prove below:

∀(ψ,c) ∈ res,∀µ∈ c,φ = eval(µ|Yi
,ψ) (4)

∀(ψ1,c1),(ψ2,c2) ∈ res,φ1 = φ2⇒ c1 = c2 (5)

These invariants are obviously true before entering the loop on line 6. Theαd’s
defined on line 5 are the equivalence classes of≀xi onV. Thusθ = eval(µ|xi

,φ) (line 7)
is well-defined onαd. Furthermore,φ ∗xi ,µ θ for anyµ∈ αd. θ is either an expression
smaller thanφ, orφ. In both cases, by induction hypothesis or by the proof of correctness
of SolveSub(φ,V, i) above,SolveSub(θ,V, i) is correct.

On line 8,c is an equivalence class for≡xi
θ on αd andψ = norm(µ,xi ,θ) = norm(µ

,xi ,φ) (sinceφ ∗xi ,µ θ) for anyµ∈ c. Thusψ does not depend onxi , and, by induction
hypothesis,EquivSplit(ψ,c, i +1) is correct. Therefore, on line 9,c′ is an equivalence
class for∼Yi+1

ψ onc, andψ′ = eval(µ|Yi+1
,ψ) for anyµ∈ c′. Let µ∈ c′.

ψ′ = eval(µ|Yi+1
,ψ)

= eval(µ|Yi+1
,norm(µ,xi ,φ))

= eval(µ|Yi
,norm(µ,xi ,φ)) becausenorm(µ,xi ,φ) does not depend onxi

= eval(µ|Yi
,φ) by lemma 3

When inserted inres(line 10),c′ is merged to a(ψ′′,c′′) ∈ res if, and only if, ψ′′ = ψ′.
By invariant 4,ψ′′ = eval(µ|Yi

,φ) for µ∈ c′′, so that this insertion inrespreserves both
invariants.

Recall thatαd (line 6) is an equivalence class forwrxi . c being an equivalence class
for≡xi

θ onαd, it is an equivalence class for≀xi∩≡
xi
θ onV. Similarly,c′ is an equivalence

class for∼Yi+1
ψ onc, hence an equivalence class of≀xi∩≡

xi
θ ∩∼

Yi+1
ψ onV. The algorithm

reaches line 11 when all these equivalence classes of≀xi∩ ≡
xi
θ ∩ ∼

Yi+1
ψ onV have been

treated and inserted intores. Thus, the union of the sets stored inres is exactlyV.
By invariant 4, they are pairwise disjoint, hence form a partition of V. By invariants 4
and 5, we conclude that they are exactly the equivalence classes of∼Yi

φ , proving the
correct result ofEquivSplit(φ,V, i).

