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Abstract—AADL is an architecture description language in- system. Some behavior of an AADL specification can be

tended for model-based engineering of high-integrity disibuted  inferred from the described architecture thanks to the AADL
systems. The AADL Behavior Annex (AADL-BA) is an exten- runtime model. However. this remains limited.

sion allowing the refinement of behavioral aspects descriloe
through an AADL architectural description. When implementing AADL proposes annexes tolextend the core language.
Distributed Real-time Embedded system (DRE), fault tolermce Among them, the AADL Behavior Annex (AADL-BA) al-

concerns are integrated by applying replication patterns.We |ows one to associate behavioral description, to desciibe,

considered a sim.plified design of the primary bacKup replicg’on particular, synchronization mechanisms.
pattern as a running example to analyze the modeling capabfles . . .
of AADL and its annex. Our contribution lies in the identifica tion As members involved in the elaboration of these annexes,

of the drawbacks and benefits of this modeling language for ac We propose a lookup on AADL-BA to be issued in spring
curate description of the synchronization mechanisms intgrated  2010. It provides constructions to define the expected behav
in this example. . - _ ] ) iors of system components described with AADL. It relies on
Index Terms—aadl, behavior; fault-tolerant; real-time dis- 5 5\ ;1omata-based syntax. However, ensuring the congjsten
tributed systems. 4 e
of these automata with regards to the core specification of
the system is a difficult issue. It is of interest to use the new

) i ) features of the standard as soon as possible to improve its
The Architecture Analysis and Design Languad@] capapilities.

(AADL) is an international standard intended for modeldmas a5 it tolerant DRE application is used as arunning ex-
engineering of Distributed Real-Time and Embedded (DR%)mple to illustrate AADL-BA modeling capabilities w.r.t.

systgms. I_t aims at mOd,e”ng DRE systems with deployme'ggmchronization issues. This application is used to deinates
configuration and real-time information, thus allowing eodyap| _ga efficiency.

generation. Both functional and non-functional featuresym
be specified with AADL.

I. INTRODUCTION

Based on that experiment, this paper discusses the difficul-

For systems requiring strong dependability, DRE applictles discovered while modeling this system with AADL and

. . PICEADL-BA. It also proposes some design strategies to describ
tions usually implement both control and data acquisitioNy avior of components in AADL-BA. In addition, we discuss

Services. Certification processes consider proﬁh_ng,fman %bout some difficulties discovered while modeling this sgst
tion, test, and fault tolerance as methods to increase ft h is structured foll Section || ts th
dependability of the whole system. Hardware and software € paper IS structured as follow. Section 1 presents the

replication are amongst the most popular methods enablﬁ‘@se study and h'gh“ght two modeling challgnges raised by
ch systems. Section IIl presents an overview of the core

fault tolerance. It boils to synchronize several copies h&f tS

application to improve the system overall dependability. E\Tguta%e and its SimaP:LCS throu%hdtheSAAtl_DL ?\?SC”&T;” f[)f
replicated application is a distributed multithreaded lapp selected components ot In€ case study. Section 1V proviees

tion. Thus, its design has to ensure that local synchraoizsit rﬁy.gongﬁpg thtr;le annengs I\INe” ast.gw\(iellnestfor r;;)!(jjfelmg
do not interfere with the fault tolerant protocol. Basigathe € 1dentified challenges. Finalfly, Section v reports so

use of two distinct synchronization mechanisms should n%?Cks about AADL-BA.
affect system liveness.
The AADL standard is organized as follows: the core 1. THE PBRSTRATEGY
language defines the main semantics of systems. The core
semantics definition document is available for years anéiov In this section we present the Primary Backup Replication
most of the features needed to define a dependable comp(®BR) mechanism in the context of DRE systems.



A. Passive Replication strategy for fault tolerance a) Detecting the Primary CrashThe detection of the
One of the most efficient way to ensure fault toleranc%rimary replica crash is implemented by an heartbeat pobtoc

is redundancy. Fault tolerance mechanisms then often rél—l us, 1 ambah\k/e messag_(]::'s ?]re serr:t p(:]r|od|c;ally frpm t_r|1|e
on combined hardware and software redundancy to prevé’ gnary t: ackups ;O Eo“ y 1 Tm that t N prlmarqy IS st
system catastrophic failures. Replication-based meshani running. As soon as backups no longer receive such messages,

assume that the application is deployed on several distir%?y suspect a crash of the primary. A timeout is used locally

hardware nodes. A fault assumption defines the way err egchE?a?(upt;‘o tI:llggeFr) an elevcvt;]on p:;oces_s. h
occur, propagate and trigger failures in the applicatiod an ) Electing the New PrimaryWhen the primary crashes,

the hardware. A synchronization protocol is enforced betwe©ne or several backups do not receive their heartbeat in time
the different copies of the application in order to presahee They broadcast to each backup a notification that the primary

application function in presence of local software or haacav crashed. The election process 1s determmlstlc:_ backupards
orted and the next primary is the backup with the smallest

failures. The design and validation of such mechanismsimmﬁp A lqorithm desianed to tolerate th ah f
active research topics when hard real time requirements are consensus algorithm designed (o tolerate the crash tau

considered [2], [3], [4]. model is used to ensure that every backup agreed on the

The Primary Backup Replication is such a mechanism. iﬂentity of the new primary [5]. Once elected, this primary

is designed to tolerate a bounded number of crashes of {ﬁgtacr;[thr;est:thcaS%n zs sli?:%?ioans gﬁs?rl]belei\lew Primary-
hardware executing the application without paying the odst 9 PP Y-

concurrent executions of the same application. The cop‘iesTohe new primary must restart the application from the most

the application are synchronized with execution contrslle récent checkpoint. As said above, checkpoints are periodic

The role of these controllers is to enforce the replicatio%napShOts of the application execution context. As soon as

strategy. The replicas (the copies of the application aeit the backup restarts the application, it uses this checkpoint t

associated controller) is the building block of the PBRtstys :gzte;ri?ne izzllgat'ﬁga?;encgt:og Efgﬁﬁﬂ;g Iﬁiznggr:ng:%gn de
as illustrated in figure 1. We summarize the strategy asvisiio 9 bp prep

) . thanks to the checkpointing period. Once the checkpoint is

1) One of the replica, called therimary, executes the ap- rg|oaded, the new primary executes the application in @ stat
plication. The controller of this replica manages periodig,at s, in the worst case, few checkpointing periods olde Th
snapshots of the application execution context and sengsckpoints sent by the primary are often used as heartbeat

them to other replicas. . messages as they are sent at a minimal frequency.
2) Other replicas are calldshckupstheir local copy of the

application is not executed. Their controller is waitind®- Behavioral Modeling Challenges

for execution context updates sent by the primary. TheseThis case study brings some interesting challenges in terms
updates are stored locally. When the primary replicaf design and model-driven engineering. We use these chal-
crashes, backups can restart the application in its méshges to illustrate the features of AADL-BA.

recent execution context. The design of such mechanisms is complex :

3) As soon as the crash of the primary is detected by a, The protocol defined between replicas often rely on
backup, backups synchronize to elect a new primary that consensus algorithms that are rather complex to check.
restarts the application at the last checkpoint. Checking and assessing this protocol is the first step to

obtain efficient fault tolerance mechanisms.

« The controller has to be synchronized with the application
for checkpointing. When naive atomic snapshots are not
allowed, building the model of checkpoint mechanism
becomes actually a challenge.

replica
P L L L running standby

Application ———4

| |
' [
|
| trol : Application .
: observe § control | | execution back « Eventually, time constants are often used to tune the crash
! : primary [~ g replic:[; detection services. The values used have an important
[ — replica i impact on the efficiency of the algorithms.
Execution platform * 1) Inter-replica Protocol: Several methods exist to model
Heartbeat and check the protocols defined between replicas. Most of
a. b. these approaches are extensions or refinements of the "state
machine approach”, [6]. The issue of this seminal work was
Fig. 1. Replica high-level architecture to handle the complexity of representing all behaviors in a

single model. A solution is to consider operational modes to

We model both primary and backups behaviors. Thréandle separately the behaviors of backups and primary,The

points need to be detailed in order to identify the challsngéhe issue is to handle carefully mode switches. In [7], AADL
encountered when modeling such a system: detection of tiees been used to describe a complex replication strategy and
primary crash, election of the new primary, restart of theheck the communications between replicas inside modes and

application on the new primary. during mode switches. Verifying mode switches highlighted



weaknesses in their case study design. Such verificatitke tas a) Software Components: Datapresent data types and
remain at a quite high level of abstraction. This work assummay contain other data or subprograms (see shared data).
the fault tolerant protocol to be described by means of syA- subprogramis an abstraction of procedures in imperative
chronizations on communications (e.g. mailbox services). languages. Athread is the execution and schedulable unit

As said before, the synchronization method between the AADL. It may contain data and subprograms, as well as
application and the controller has also to be modeled inrordgibprogram call sequence# Processrepresents a virtual
to check the validity of the checkpointing mechanism. address space to store threads and data.

2) Synchronization for Checkpointingzor non trivial ap- b) Hardware Components:AADL defines Execution
plication, the state capture cannot be performed atorgicafflatform Componentdo describe the underlying hardware
without suspending the application for a long period. In mogroperties of a system (that can be provided by both hardware
case, synchronized partial checkpoints are preferred vitieen and a middleware layer). frocessoirepresents a micropro-
application is executing several tasks. The synchromimaticessor with its scheduler. memoryrepresents a storage space
of the partial checkpoints is necessary to obtain a glob@AM/ROM or disk). Abusrepresents a hardware communi-
consistent checkpoint. Usually such a synchronizatiommis i cation channel that links execution platform components.
plemented via runtime services like mutexes, semaphoms an ¢) System Componen& Systenis an hybrid component
monitors. used to build hierarchies of software/hardware components

First modeling challengelow to model complex thread syn- The description of these components and their semantic
chronization protocols that define conditional synchration implicitly have an impact on the behavioral aspect of com-
between threads ? Is it possible to model distinct types B@nents that are constrained by the low-level architettura
synchronization mechanisms at the same time (e.g. mailb&escription. However, refinement of the component behavior
like mechanisms and shared variables) ? can be specified by the use of the AADL Behavior Annex.

3) Timeouts and time-triggered activitfthe heartbeat pro-  2) Component InteractionsComponents interaction are
tocol uses watchdog or timer services to trigger the elaaio defined in a two step process. First, interfaces of compsnent
the new primary. A clean specification of interactions bemwe have to be defined to determine the possible interactions. Th
watchdogs (or timers) and threads needs to be providedsit Idgaturesof a component arevent port, event data port, data
for the backup replica controller. port, parametersand subprogram accessedhey represent

Second modeling challeng&t which level of abstraction such interfaces that are often specific to a given type of

time triggered behaviors should be described ? How to dg2MmPonent. Thusports provide generic mailbox services for
scribe their interactions with the rest of the system ati¢i threadsParametersare interfaces of subprogram components.

The next section provides a brief overview of the AADLThSey car:j bzzpl);aflfgam;_, outorin OUt_ . hani
architectural description language. Then, we presentritta-a econd, efines ‘communication mechanisms. as

tecture of the core components of the PBR replica design red data..Pr.owdes sgbprogram access are used in data's
in this language. interface to indicate which components access such data.

Connections must be specified between interfaces to show
communication links.
3) Component Properties and ModeAADL components

AADL [1] is an architecture description language standai@escription can be completed byroperties The AADL
managed by the Society of Automotive Engineers (SAElpnguage defines a large set of specific properties to refine
This section presents a short overview of version 2.0. Ti§@mponent definition. For instance, it is possible to refyre s
software architecture of the main PBR components is spdcifighronization policies between threads, management pslici

IIl. DESIGNING PBRwWITH AADLV2

in AADL to illustrate the standard capabilities. of critical sections on strategies to deploy and configuee th
system [8].
A. Overview of AADLV?2 In addition to properties, AADL provides a support to

) o describe operational modes of a system. Modes provide a
AADL is a component-based description language for emyjce structure to describe reconfiguration processes sfiegi
bedded architectures. It focuses on specifying the sre@nd  components. Nevertheless, the set of components (a configu-
interactions between the system components. AADL providgsion) used in the system are statically defined. Connestio

notions such aprocessesthreads data for software entities panween components and values of properties can also be
andprocessorsbusfor hardware entities. mode-specific.

AADL allows to define components: their interface, their
structure and their propertiesvith respect to functional and B. Modeling the PBR Architecture with AADLv2
non-functional requirements. Modeling a DRE system with AADL requires to identify
1) Main Components:Components in AADL belong to the different roles of components and their hierarchies. In
three types of component that are briefly described here. AADL, data and subprograms are located in threads. Threads
are also located in processes (providing a memory space
1These are called attributes in other specification languiageh as UML  shared by all enclosed threads). System components are used



to hierarchically structure the system, thus increasing th port InA —> ThA.InA;
readability of the specification. port InB — ThB.InB;
Wi lect tsth d b s port ThA.OutA —> OutA;
e selec eoproce_sscomponer! sthread subprogramsto port ThB.OutB —> OutB "
model the application and replica controller modules of ed Application .impl;
replica. The computers used in PBR is represented by a set of
thread thread w_state A;
processorcomponents and bBuscomponent. features
Data exchange and interaction between components arénA : in event port;
specified through AADL features agata, event and event ?E?gh;‘gd S‘;‘::t_PO”?
data portls_and connections The systemcomponent allows _ requires data access SharedData.Impl;
us describing our complete PBR architecture that contaipsoperties

one primary replica and two backups. Themrts and data Disrf’oad“’h Protocol z goeo”&gfc?
components can both be used to model the synchronlzatmra;ompute Execution Time = 0 ms .. 200 ms:
between the application and the controller. A decision lbbas t Deadline > 500 Ms;
be made between these mechanisms Initialize_Entrypoint_Source Text = "InitSpg";
. ) . . end thread w_state A;
1) The Replica System Componefte replica module is
presented in listing 1. It is aystencontaining twoprocesses Listing 2. AADL PBR case study : Application process

the application and its controller. This makes one replica. Listing 2 also describes one of these thread interface

processor TheCpu end TheCpu; (thread_w state_A) and provides information: initialization
subprogram, type of thread (e.g periodic), period, etc.
3) The SharedData Data Component:Since the appli-

system Replica end Replica;

system implementation Replica.impl cation context is manipulated by two threads, we use the
subcomponents T AADLV2 dedicated pattern to specify sharethta compo-
Appli . process Application .impl;
Rep_Ctrl : process Replica Ctrl.impl; nents.ConcurrencyControI_ProtocoI selects a concurrency
CPU : processor TheCpu; management policy supported by the AADL runtime (here,
connections L. . . )
port Appli.OUtA —> Rep_Ctrl . InA: Priority_Ceiling). Provides subprogram accesﬂ;e.flnes the .
port Appli.OutB —> Rep_Ctrl.InB; subprograms to be used _to access datg that. will be required
port Rep Ctrl.InA —> Appli.OutA; by threadsThA and ThB. This is depicted in listing 3.
port Rep_Ctrl.InB — Appli.OutB;
properties data SharedData
Actual_ProcessorBinding => features _
reference (CPU) applies to Appli; Update : provides subprogram accessUpdate;
Actual_ProcessorBinding => Read : provides subprogram accessRead;
reference (CPU) applies to Rep_Ctrl; proper_ties
end replica.impl; Priority = 240;
ConcurrencyControl_Protocol = Priority_Ceiling;
Listing 1. AADL PBR case study : replica module end SharedData;

Processes are bound to the execution platform componetftta Shared Data. Impl
the CPU processor The connectionssection shows how to s‘g;‘;?g]ponemzata.
connecin ports (resp.out port9 of the involvedprocesscom-  UpdateSpg : subprogram Update :
ponents. Theropertiessection binds processes to processorfteadSpg  :subprogram Read;
using theActuaI__Prqcesso_rBlndlng property. . Cogr?xelm:logusbprogram access UpdateSpg—> Update;
2) The Application Process Componenthe Applica- Cnx2 : subprogram access ReadSpg—> Read;
tion process is presented in listing 2. Sectifmaturesde- end SharedData.Impl;
scribes its interfaceevent portsfor in/fout communication
to halt/resume the thread execution. Two concurrent tisread
ThA and ThB, manage the application context (component4) The Replica Controller Process Componefitie replica

The_Shared_Dat a) and take care of variables consistency. controller process (see listing 4) contains a thread synchr
nizing actions. Sectiormonnectionsshows the links between

between this thread and the replica controller processigiiro

Listing 3. AADL PBR case study : shared data

process Application

features
INA : in event port; ports
g‘BtA - n . eve”tt Po”t; We focus here on the description of the different execution
u . out event port; . .
OutB - out event port. modes of the process. Propertlesf components and cor_rmectlo
end Application ; can be mode-specific. The keywolidamodesllow to specify

_ _ o _ the mode in which the component is involved.
process implementation Application .impl

subcomponents process Replica Controller
ThA : thread thread w_state A; features
ThB : thread thread w_state B; InA : in event port;

connections InB : in event port;



OutA : out event port;
OutB : out event port;
SnapshotRcv :in event data State;
SnapshotSnd :out event data State;
IsPrimary :in event port;
IsBackup . in event port;
IsElection : in event port;

end Replica Controller;

process implementation Replica_Controller .impl
subcomponents
ThA : thread thread snap.sync

in modes (Primary, Election, Backup);

connections

port InA — ThA.InA in modes (Primary);
port InB — ThA.InB in modes (Primary);
port ThA.OutA —> OutA in modes (Primary);
port ThA.OutB —> OutB in modes (Primary);
port ThA.SnapshotSnd—> SnapshotSnd

in modes (Primary);
port SnapshotRcv—> ThA.SnapshotRcv

in modes (Backup);

modes

—— modes

Primary : initial mode;
Backup : mode;
Election : mode;

— transitions

Backup —[IsElection}> Election;
Election —[IsBackup}> Backup ;

Election —[IsPrimary}l-> Primary;
end Replica_Controller.impl;

Listing 4. AADL PBR case study : Replica controller process

program more complex synchronization services. So, synchr
nizations can be either defined at the thread or subprogram
level but through different mechanisms. Next section will
highlight the fact that describing the implementation ffro
scratch” with rendez-vous is easier at the thread level.

The heartbeat watchdogs are often implemented with soft-
ware timers. No timer services are directly available in AAD
Nevertheless, the concept of dispatch on timeouts can melfou
in the AADL-BA. We show in next section how to define a
watchdog as an additional dispatch condition for the replic
controller thread component.

IV. AADL B EHAVIOR SPECIFICATIONS

The AADL Behavior Annex provides an extension to spec-
ify the behavior attached to AADL components. The intend
of this annex is to refine the implicit behavior specified in
the core language. Thus, it is possible to attach a desmmipti
called behavioral specificationto each AADL component
using AADL annexsubclauses

The AADL-BA defines several languages. A state/transition
automaton describes component behavior. A dispatch condi-
tion language refines thread dispatch behavior. An interac-
tion operations language specifies component interacésns
communications through ports, parameters, subprograls cal
etc. The action language combines basic control structures
(loop and test) with subprogram calls and port accesses.
Then, behavioral actions are attached to transitions of the

The operational modes of replicas described in Il amponent automaton. It can be seen as a kind of abstract
primary, backupandelection Mode transitions are explicitly code snippet bound to transitions. It is a major extension of

defined by the syntaxmodeinitial — [eventtriggered— >

mode final.

the expressiveness of the AADL core language.
Finally, an expression language provides logical, refetio

Mode switch is synchronized with events occurring fromand arithmetic expressions to manipulate variables.

ports. For example, when the replica controllebatkupmode

In this section, we do not detail the expression language

receives asElectionevent, then the process switches to thehich syntax is very close to the one provided by Ada.

electionmode.

C. Checkpoint synchronization and watchdogs

A. The Behavior Specification
A behavior specificationis expressed as a state transition

AADL models of the application and the replica controlleautomaton with guards and actions. Guards and actions uses
have been presented but there is still no description of tkariables to manipulate data.

checkpointing and watchdog services.

The automaton is used to specify the sequential execution

The checkpointing service has to enforce a rendez-vouss. Ibiehavior of subprogramand dispatch protocol. Input and
has to block threads until all participants reached the eend output behavior of AADL threadsor devicescan also be
vous. Then the controller saves the copy of the applicatiexpressed by an automaton. Finally, it can also specify the

state, and releases application thread executions.

dynamic behavior of @rocessor a system

There are two reasons for suspending a thread: when it id.ocal variables (non-persistent) can be used to save in-
waiting for a dispatch trigger, or when is waiting for a slaretermediate results. State variables specified by the keywor
resource. In the first case, it is easy to control how the thiga persistentor referencing an AADL data component can be
wake-up by sending an event on one of its ports. A thread wilsed to reduce the size of the state automaton by keeping
reach such dispatch state at the end of a call sequence. Thesek of counts for instance.
particular states can be used to set up rendez-vous betweeh behavior automaton starts from a@nitial state and termi-

threads.

nates in afinal state.Completestate represents a suspend/re-

In the second case, a Concurrency Control Protocol defirggne state out of which threads and devices are dispatched [9
how critical sections associated to shared data should Remaining states are called execution state and represents
protected. One of the proposed protocol uses subprogramtermediate state of the automaton.
implementing the usual lock and unlock primitives (mutgxes A transition represents a change from the current source
to enforce mutual exclusion. These primitives can be usedstate to a destination state. A transition is activated witen



dispatch or execute condition is evaluated to true. Then thysubrogramlor Mysubrogram!(paraml,...paramNjhis call
attached action is executed. to subprogram access is defined in the actions attached to

Dispatch condition affect the execution of a thread baséd@nsitions.
on external triggers. Execute condition model behaviohiwit . ,
an execution sequence of a thread, subprogram or ot erChekpomtlng Implementation
component. They are based on input values from ports, shared) Shared Data Semantic§he standard defines three ways
data, parameters, and behavior variable value [9]. to model critical section in order to access shared data.

1) Subprogram Behavior Specificatiofihe initial state of a) The smaller action block:A smaller action block
the subprogram behavior automaton represents the star@mgapsulates the shared data subcomponent referencévith t
point of a call. The final state represents the completion u$e of {’ character and}’ character as delimiters. The annex
a call. The automaton describes the execution behavior ospecify that if an action block contains references to sever
subprogram with one or more return points [9]. Its has orshared data subcomponents, then resource locking will be do
or more intermediate execution states but cannot contairinathe same order as the occurrence of the references to the
complete state. shared data subcomponents. Resource unlocking will be done

2) Thread and Device Behavior SpecificationBhe be- in the reverse order [9].
havior automaton of thread or device components describes: b) Provides subprogram accessppropriate provides
one initial state representing the state before inititiia Subprogram access of the corresponding shared data compo-
actions; one or more complete state representing halthesunent can be called in actions associated to transitionsselhe
state; zero or more intermediate execution state and onle fipeovides subprogram access must be explicitly defined to
state representing finalization completed by thread orogevimplement the concurrency control protocol which coortisa
completes. accesses to shared data.

The behavior of a thread dispatch is a dispatch condition c) Getresource and releaseesource runtime services:
evaluates to true and then the transition (outgoing of a cofdet resourceandreleaseresourceruntime services specified
plete state) is taken. Action associated to the transitierpar- in the runtime support of the AADLv2 standard [1] can be
formed. Periodic dispatches are implicit. Sporadic disipes manually inserted in actions attached to transitions.
can be triggered by the arrival of event, data, event dataAccording to the AADLv2 standard, the user can also
on ports or the call to provides subprogram access featurpgvide specific implementations ofet resource and re-
AADL-BA describes timeout for thread dispatch with the uskease resourceat execution platform level.
of on dispatch timeouts dispatch condition. Timeout is a The small block action is easy to use. It allows implicit
dispatch trigger condition raised after the specified amofin and automatic placement gét resourceandrelease resource
time since the last dispatch [9]. services by the use of”, ' }'. However concerning modeling

The thread behavior automaton are consistent with themplex critical section as multiple data shared and mleltip
thread states/actions described in the core AADL langualge [lock/unlock, the semantic defined is not precise enough.

We identify the same states named differently. The initialess ~ The use ofprovides subprogram accessiplies to check
corresponds to the halted state. The complete state reysesall subprogram access and subprogram implementation to
the awaiting dispatch state. Final state represents tippatb avoid run-time violation. So, systems analysis becomesmor
thread state. complex.

3) Other Component Behavior Specificatiofiie automa-  The use ofget resourceand releaseresourceruntime ser-
ton of other components (process, processor, etc) statls wiices is very expressive to model access to critical section
one initial state representing the state before initigitima one The user can specify easily with subprogram calls whereds th
ore more complete states and one final state representingliegin and the end of the section for simple synchronization
state after finalization [9]. schemes.

4) Component Interaction Behavior SpecificatioAs said In the case if the user provides specific implementations of
above, AADL threads interact through shared data, condectbe get resourceand releaseresourcesubprograms, then he
ports and subprogram calls. AADL-BA provides mechanisnigs to insert by hand the calls to these subprograms in AADL-
to model the behavior aévent data portsdata portsor event BA specification. Nevertheless, the standard does not geovi
ports Thus, behaviors and policies governidgta portand any guidelines to specify the behavior of these subprograms
event data portjueues (e.g dequeue protocol) can be specified.Thus, we prefer to use AADL ports to model the synchro-

Frozen ports mechanism can be used to ensure availabififgation barrier used in the check-pointing mechanism.
of received data on a port after thread dispatch occurs. Sen@) Modeling Challenge and ComplexitySynchronization
and receive outputs -described by shortcut operatorsugjtro for checkpointing requires to specify a complex synchro-

ports can be specified. nization mechanism between threads. We have mentioned in
The standard defines several ways to model access to shaextion Ill that the core AADL allows the description of
data subcomponents (see next subsection). synchronization mechanisms between shared resourceg.(dat

Finally, interaction between components using subprografBubprogram accesses or events sent on connected ports are
can also be specified by subprogram access, using the syrao involved to model these check-pointing mechanisms.



The listing 5 depicts the behavior automaton of thread sf: final state;
thread w_state A contained in the application process. The ”asfi‘slt[]'gnssl nitSog ! 1
thread behavior automaton has one initial s&ifgwo com- - { Pg! i

plete statesl, s2 and one final statef. s1 —[on dispatch InA]-> s1 { ReceiveSnapshot!;
StoreSnapshot!};

annex behaviorspecification {xx

states sl —[on dispatch timeouf—> sf { OutElection! };
si: initial state; wx}
sl, ;2: complete state;
sf: final state; Listing 6. AADL-BA PBR case study : timeout
transitions
s —[[]O—n> dsisl gt(':’r‘]]'tipgzl %‘?Com Ltationd ! We focus now on the dispatch timeout. According to the
P OutA!p b ' semantics of the AADL-BA the timeout occurs when the
s2 —[on dispatch InA]-> s1 { Computation2! }; period of the thread expired. The thread is in s&dtevhen the
*x timeout triggers. If the backup replica controller procdess

Listing 5. AADL-BA PBR case study : thread behavior autamato ~ NOt receive the snapshot (ileA) then the timeout triggers.
The transition betweesl andsf with the on dispatch timeout

e X . o - . condition occurs. The performed actio@ytElection) is the
specified in the actions section{{"..'};" section) is called to gnjissjon of an event on the OutElection out event port. This
initialize the thread. event is transmitted to other backup replica controllecpss.

Complete statesl and s2 are waiting states used whenrpen the reception of this event triggers the mode change int
the thread waits for dispatch (execution). At the first dispa replica controller process.

the transitions1to s2 triggers and the actions attached to the

transition are executed. Thus the subprogf@emputationls V. DISCUSSIONS

invoked and theOutA! produces an event on the event port pgr has peen selected because of it complex behavior
OutA This signal corresponds to a situation in which thgyen when no crash occurs. This section reports comments
thread has completed its works and waits in s&2efor a 41 advices for people already using the core language and

signalInA to resume. _ _ interested in using the behavioral annex.
The synchronization protocol is described through transi-

tions triggered and actions executed betws&mand s2 s2 A. Synchronization on Port or Resources

is the rendez-vous stat@utA event is the notification that a e core language explains how threads can be synchro-
thread reach the rendez-vousA is the event received whenpi;eq with dispatched events. A reception on a port can be
checkpoint is completed.

When the transitiosi to s1triggers, thdnitSpgsubprogram

used to release an execution. AADL-BA provides an automata
C. Heartbeats Protocol Implementation based representation to describe the call sequences eatdxyut

In this subsection. we describe how to use AADL-BA tthreads and the state on which they are waiting for dispatch.
’ Yhis state base representation clearly identifies statesevh

model the behavior of the heartbeats protocol using AADl[ﬁe application can be blocked. This annex strongly impsove

BA timeout for backup repllcas.. . the readability of thread behaviors in a specification. Hmre
The heartbeat protocol used in the PBR architecture relies .
. L o It does not help to decide when shared resources should be
on a timeout that is triggered once the specified amount 0 o .
. . , . . referred to complex synchronization protocols and vieesa.
time since the last dispatch has expired. The timeout value"i ; . .
Thus, design strategies are required to understand conse-

given by thePeriod property of the thread. . T o

Listing 6 depicts the behavior automaton of the threa@iﬁgcisr c}; deescrfr']rt]%osﬁlﬁar:nr'eza;'g&:asu?]rcr;ic;?l.s'ﬁ:sser_
contained in the replica controller process (backup rapjic . Vlth' W tW d di ; h ud't' y tIZ t'l ¢
including timeout. We give a simple description for bett Ices, then ports and dispatch conditions are not sa rfac .

: . . o hread behavioral models are not modular enough: all dis-
understanding. Thetatessection declaresi as initial state atch conditions have to be defined in the same automata
(before thread initialization)s1 as complete state (for dis-P : '

, Only subprograms models can be nested and reused in other
patch) andsf as final state, bprograms. A rendez-vous protocol defined in behavioral
When the thread starts, initialization is due by invokin ubprog ' Z-vous p ! in behavi
odels of subprograms can only rely on the semantics of the

the InitSpg subprogram. The transition starts from the initia(]j Ki imiti GetR d Releasee
statesi and stops in thesl complete state. When the threa OCKIng primitives ELResource and Releaseesource.

receives a InA event, the condition on dispatch InA is trug, Get Resource, ReleasResource Semantics

the transition betweeasl to itself triggers. . .
Thus,ReceiveSnapshand StoreSnapshaubprograms are

called (see actions section attached to the transition).

AADL proposes to infer critical regions from the archi-
tectural description, or from AADL-BA action blocks. The
standard let also to designers the opportunity to inseriaip

a”gte;(tebsehaViO—fSPeCifica“O” {xx calls to Get/Release to suspend/resume threads. If Get/Re-
si: initial state: lease primitives are not necessarily paired in subprogram

sl: complete state; descriptions, then the rendez vous could be implemente No



that POSIX implementations [10] consider this construct d&e unsafe to have semantical rupture when engineers come to
erroneous. If designers follow this strategy, then theddeash define precisely the behavior of the system.

explains that it may not be compatible with the AADL This paper is a contribution to outline such difficulties and
semantics of critical sections protection. Then, the whoserve as a basis to enhance the standard through discussion i

synchronization policy has to be checked again.
Despite this modeling issue, AADL-BA provides an inter-

esting additional strategy to define critical regions: denaic-

tion blocks. Smaller action blocks define boundaries ofazit [1]
regions for shared data. Action blocks can be seen as sietplifi 2]
programs that refine the notion of call sequences from the cor
language. Such critical regions have the same problem kiean t
ones defined by require/provide data access. If criticabrey 3]
of distinct shared data overlap, then Get/Release have to [)e
inserted in the correct order to avoid deadlocks. ”

C. Timeout on Thread Dispatch

In AADL, a timeout allows triggering call sequences whenl5]
a dispatch is not performed in time. The deadline is defined
respectively to the previous dispatch of the thread. Thishme
anism has been used to implement successfully a watchdog f6F
the heartbeat protocol. The timeout dispatch conditiorhin t
annex seems dedicated to avoid threads to be blocked waitifyg
for an event issued from their ports.

Watchdogs are also used to detect and interrupt programs
exceeding their worst case execution time. Timeouts do not
provide such a semantics. During the execution of an action
block, even if a timeout condition is met, threads have tg,
complete the execution of the transition prior to triggee thj1o]
timeout reaction. Such a semantics is safer than interrgpti
subprograms that may hold locks.

VI. CONCLUSION

Due to the recent publication of AADLv2 and AADL-BA
(this annex will soon be in informal ballot), it is of intetes
to check if engineers can use both AADLv2 and AADL-
BA safely (e.g. in a consistent way). For that purpose, we
model the PBR (Primary Backup Replication) strategy that is
a typical fault-tolerant mechanisms for Distributed R€&gthe
and Embedded (DRE) systems.

Unsurprisingly, we successfully modeled the PBR architec-
ture. However, it was more difficult for the behavioral part.
For instance, we had to relax some of our initial requirement
to reach our objectives. The main difficulty resides in the
design of complex synchronization mechanisms such as await
dispatch or mutual exclusion that are commonly required in
distributed system design.

There seems to have two approaches driving the definition
of AADL-BA. The first one proposes very strict semantics
rules that are consistency with the core language at the
architectural level. The second one seems to significaalixr
the consistency rules (lock/unlock, timeout). The behalio
part of a component may be incompatible with the initial
semantical expectations of an AADL component.

Of course, tools may help designers to explore their design
from the behavioral description as it is now the case for the
architectural part. However, in a MDE-based approach, it ma

the standardization committee.
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