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Abstract—AADL is an architecture description language in-
tended for model-based engineering of high-integrity distributed
systems. The AADL Behavior Annex (AADL-BA) is an exten-
sion allowing the refinement of behavioral aspects described
through an AADL architectural description. When implement ing
Distributed Real-time Embedded system (DRE), fault tolerance
concerns are integrated by applying replication patterns.We
considered a simplified design of the primary backup replication
pattern as a running example to analyze the modeling capabilities
of AADL and its annex. Our contribution lies in the identifica tion
of the drawbacks and benefits of this modeling language for ac-
curate description of the synchronization mechanisms integrated
in this example.

Index Terms—aadl; behavior; fault-tolerant; real-time dis-
tributed systems.

I. I NTRODUCTION

The Architecture Analysis and Design Language[1]
(AADL) is an international standard intended for model-based
engineering of Distributed Real-Time and Embedded (DRE)
systems. It aims at modeling DRE systems with deployment,
configuration and real-time information, thus allowing code
generation. Both functional and non-functional features may
be specified with AADL.

For systems requiring strong dependability, DRE applica-
tions usually implement both control and data acquisition
services. Certification processes consider profiling, verifica-
tion, test, and fault tolerance as methods to increase the
dependability of the whole system. Hardware and software
replication are amongst the most popular methods enabling
fault tolerance. It boils to synchronize several copies of the
application to improve the system overall dependability. A
replicated application is a distributed multithreaded applica-
tion. Thus, its design has to ensure that local synchronizations
do not interfere with the fault tolerant protocol. Basically, the
use of two distinct synchronization mechanisms should not
affect system liveness.

The AADL standard is organized as follows: the core
language defines the main semantics of systems. The core
semantics definition document is available for years and covers
most of the features needed to define a dependable computer

system. Some behavior of an AADL specification can be
inferred from the described architecture thanks to the AADL
runtime model. However, this remains limited.

AADL proposes annexes to extend the core language.
Among them, the AADL Behavior Annex (AADL-BA) al-
lows one to associate behavioral description, to describe,in
particular, synchronization mechanisms.

As members involved in the elaboration of these annexes,
we propose a lookup on AADL-BA to be issued in spring
2010. It provides constructions to define the expected behav-
iors of system components described with AADL. It relies on
an automata-based syntax. However, ensuring the consistency
of these automata with regards to the core specification of
the system is a difficult issue. It is of interest to use the new
features of the standard as soon as possible to improve its
capabilities.

A fault-tolerant DRE application is used as arunning ex-
ample to illustrate AADL-BA modeling capabilities w.r.t.
synchronization issues. This application is used to demonstrate
AADL-BA efficiency.

Based on that experiment, this paper discusses the difficul-
ties discovered while modeling this system with AADL and
AADL-BA. It also proposes some design strategies to describe
behavior of components in AADL-BA. In addition, we discuss
about some difficulties discovered while modeling this system.

The paper is structured as follow. Section II presents the
case study and highlight two modeling challenges raised by
such systems. Section III presents an overview of the core
language and its semantics through the AADL description of
selected components of the case study. Section IV provides the
key concept of the annex as well as guidelines for modeling
the identified challenges. Finally, section V reports some feed-
backs about AADL-BA.

II. T HE PBR STRATEGY

In this section we present the Primary Backup Replication
(PBR) mechanism in the context of DRE systems.



A. Passive Replication strategy for fault tolerance

One of the most efficient way to ensure fault tolerance
is redundancy. Fault tolerance mechanisms then often rely
on combined hardware and software redundancy to prevent
system catastrophic failures. Replication-based mechanisms
assume that the application is deployed on several distinct
hardware nodes. A fault assumption defines the way errors
occur, propagate and trigger failures in the application and
the hardware. A synchronization protocol is enforced between
the different copies of the application in order to preservethe
application function in presence of local software or hardware
failures. The design and validation of such mechanisms remain
active research topics when hard real time requirements are
considered [2], [3], [4].

The Primary Backup Replication is such a mechanism. It
is designed to tolerate a bounded number of crashes of the
hardware executing the application without paying the costof
concurrent executions of the same application. The copies of
the application are synchronized with execution controllers.
The role of these controllers is to enforce the replication
strategy. The replicas (the copies of the application and their
associated controller) is the building block of the PBR strategy
as illustrated in figure 1. We summarize the strategy as follows:

1) One of the replica, called theprimary, executes the ap-
plication. The controller of this replica manages periodic
snapshots of the application execution context and sends
them to other replicas.

2) Other replicas are calledbackups; their local copy of the
application is not executed. Their controller is waiting
for execution context updates sent by the primary. These
updates are stored locally. When the primary replica
crashes, backups can restart the application in its most
recent execution context.

3) As soon as the crash of the primary is detected by a
backup, backups synchronize to elect a new primary that
restarts the application at the last checkpoint.
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Fig. 1. Replica high-level architecture

We model both primary and backups behaviors. Three
points need to be detailed in order to identify the challenges
encountered when modeling such a system: detection of the
primary crash, election of the new primary, restart of the
application on the new primary.

a) Detecting the Primary Crash:The detection of the
primary replica crash is implemented by an heartbeat protocol.
Thus, ”i am alive” messages are sent periodically from the
primary to backups to notify them that the primary is still
running. As soon as backups no longer receive such messages,
they suspect a crash of the primary. A timeout is used locally
on each backup to trigger an election process.

b) Electing the New Primary:When the primary crashes,
one or several backups do not receive their heartbeat in time.
They broadcast to each backup a notification that the primary
crashed. The election process is deterministic: backup IDsare
sorted and the next primary is the backup with the smallest
ID. A consensus algorithm designed to tolerate the crash fault
model is used to ensure that every backup agreed on the
identity of the new primary [5]. Once elected, this primary
restarts the application as soon as possible.

c) Restarting the Application on the New Primary:
The new primary must restart the application from the most
recent checkpoint. As said above, checkpoints are periodic
snapshots of the application execution context. As soon as
a backup restarts the application, it uses this checkpoint to
reset the application execution state. The latency introduced by
restarting the application on a backup replica can be bounded
thanks to the checkpointing period. Once the checkpoint is
reloaded, the new primary executes the application in a state
that is, in the worst case, few checkpointing periods old. The
checkpoints sent by the primary are often used as heartbeat
messages as they are sent at a minimal frequency.

B. Behavioral Modeling Challenges

This case study brings some interesting challenges in terms
of design and model-driven engineering. We use these chal-
lenges to illustrate the features of AADL-BA.

The design of such mechanisms is complex :
• The protocol defined between replicas often rely on

consensus algorithms that are rather complex to check.
Checking and assessing this protocol is the first step to
obtain efficient fault tolerance mechanisms.

• The controller has to be synchronized with the application
for checkpointing. When naive atomic snapshots are not
allowed, building the model of checkpoint mechanism
becomes actually a challenge.

• Eventually, time constants are often used to tune the crash
detection services. The values used have an important
impact on the efficiency of the algorithms.

1) Inter-replica Protocol: Several methods exist to model
and check the protocols defined between replicas. Most of
these approaches are extensions or refinements of the ”state
machine approach”, [6]. The issue of this seminal work was
to handle the complexity of representing all behaviors in a
single model. A solution is to consider operational modes to
handle separately the behaviors of backups and primary. Then,
the issue is to handle carefully mode switches. In [7], AADL
has been used to describe a complex replication strategy and
check the communications between replicas inside modes and
during mode switches. Verifying mode switches highlighted



weaknesses in their case study design. Such verification tasks
remain at a quite high level of abstraction. This work assumes
the fault tolerant protocol to be described by means of syn-
chronizations on communications (e.g. mailbox services).

As said before, the synchronization method between the
application and the controller has also to be modeled in order
to check the validity of the checkpointing mechanism.

2) Synchronization for Checkpointing:For non trivial ap-
plication, the state capture cannot be performed atomically
without suspending the application for a long period. In most
case, synchronized partial checkpoints are preferred whenthe
application is executing several tasks. The synchronization
of the partial checkpoints is necessary to obtain a global
consistent checkpoint. Usually such a synchronization is im-
plemented via runtime services like mutexes, semaphores and
monitors.

First modeling challengeHow to model complex thread syn-
chronization protocols that define conditional synchronization
between threads ? Is it possible to model distinct types of
synchronization mechanisms at the same time (e.g. mailbox-
like mechanisms and shared variables) ?

3) Timeouts and time-triggered activity:The heartbeat pro-
tocol uses watchdog or timer services to trigger the election of
the new primary. A clean specification of interactions between
watchdogs (or timers) and threads needs to be provided at least
for the backup replica controller.

Second modeling challengeAt which level of abstraction
time triggered behaviors should be described ? How to de-
scribe their interactions with the rest of the system activity ?

The next section provides a brief overview of the AADL
architectural description language. Then, we present the archi-
tecture of the core components of the PBR replica designed
in this language.

III. D ESIGNING PBR WITH AADL V2

AADL [1] is an architecture description language standard
managed by the Society of Automotive Engineers (SAE).
This section presents a short overview of version 2.0. The
software architecture of the main PBR components is specified
in AADL to illustrate the standard capabilities.

A. Overview of AADLv2

AADL is a component-based description language for em-
bedded architectures. It focuses on specifying the structure and
interactions between the system components. AADL provides
notions such asprocesses, threads, data for software entities
andprocessors, bus for hardware entities.

AADL allows to define components: their interface, their
structure and their properties1 with respect to functional and
non-functional requirements.

1) Main Components:Components in AADL belong to
three types of component that are briefly described here.

1These are called attributes in other specification languages such as UML

a) Software Components: Datarepresent data types and
may contain other data or subprograms (see shared data).
A subprogramis an abstraction of procedures in imperative
languages. Athread is the execution and schedulable unit
in AADL. It may contain data and subprograms, as well as
subprogram call sequences. A Processrepresents a virtual
address space to store threads and data.

b) Hardware Components:AADL defines Execution
Platform Componentsto describe the underlying hardware
properties of a system (that can be provided by both hardware
and a middleware layer). Aprocessorrepresents a micropro-
cessor with its scheduler. Amemoryrepresents a storage space
(RAM/ROM or disk). A busrepresents a hardware communi-
cation channel that links execution platform components.

c) System Component:A Systemis an hybrid component
used to build hierarchies of software/hardware components.

The description of these components and their semantic
implicitly have an impact on the behavioral aspect of com-
ponents that are constrained by the low-level architectural
description. However, refinement of the component behavior
can be specified by the use of the AADL Behavior Annex.

2) Component Interactions:Components interaction are
defined in a two step process. First, interfaces of components
have to be defined to determine the possible interactions. The
featuresof a component areevent port, event data port, data
port, parametersand subprogram accesses. They represent
such interfaces that are often specific to a given type of
component. Thus,ports provide generic mailbox services for
threads.Parametersare interfaces of subprogram components.
They can be specifiedin, out or in out.

Second, AADL defines communication mechanisms as
shared data. Provides subprogram access are used in data’s
interface to indicate which components access such data.
Connections must be specified between interfaces to show
communication links.

3) Component Properties and Modes:AADL components
description can be completed byproperties. The AADL
language defines a large set of specific properties to refine
component definition. For instance, it is possible to refine syn-
chronization policies between threads, management policies
of critical sections on strategies to deploy and configure the
system [8].

In addition to properties, AADL provides a support to
describe operational modes of a system. Modes provide a
nice structure to describe reconfiguration processes of existing
components. Nevertheless, the set of components (a configu-
ration) used in the system are statically defined. Connections
between components and values of properties can also be
mode-specific.

B. Modeling the PBR Architecture with AADLv2

Modeling a DRE system with AADL requires to identify
the different roles of components and their hierarchies. In
AADL, data and subprograms are located in threads. Threads
are also located in processes (providing a memory space
shared by all enclosed threads). System components are used



to hierarchically structure the system, thus increasing the
readability of the specification.

We selectedprocesscomponents,thread, subprogramsto
model the application and replica controller modules of a
replica. The computers used in PBR is represented by a set of
processorcomponents and abuscomponent.

Data exchange and interaction between components are
specified through AADL features asdata, event and event
data ports and connections. The systemcomponent allows
us describing our complete PBR architecture that contains
one primary replica and two backups. Then,ports and data
components can both be used to model the synchronization
between the application and the controller. A decision has to
be made between these mechanisms.

1) The Replica System Component:The replica module is
presented in listing 1. It is asystemcontaining twoprocesses:
the application and its controller. This makes one replica.

p rocesso r TheCpu end TheCpu ;

system R e p l i c a end R e p l i c a ;

system implementat ion R e p l i c a . impl
subcomponents

Appl i : p rocess A p p l i c a t i o n . impl ;
Rep Ctr l : p rocess R e p l i c a C t r l . imp l ;
CPU : p rocesso r TheCpu ;

connec t ions
por t Appl i . OutA −> Rep Ctr l . InA ;
por t Appl i . OutB −> Rep Ctr l . InB ;
por t Rep Ctr l . InA −> Appl i . OutA ;
por t Rep Ctr l . InB −> Appl i . OutB ;

p r o p e r t i e s
A c t u a l P r o c e s s o r B i n d i n g =>

re fe rence (CPU) a p p l i e s to Appl i ;
A c t u a l P r o c e s s o r B i n d i n g =>

re fe rence (CPU) a p p l i e s to Rep Ctr l ;
end r e p l i c a . impl ;

Listing 1. AADL PBR case study : replica module

Processes are bound to the execution platform component:
the CPUprocessor. The connectionssection shows how to
connectin ports (resp.out ports) of the involvedprocesscom-
ponents. Thepropertiessection binds processes to processors
using theActual ProcessorBinding property.

2) The Application Process Component:the Applica-
tion process is presented in listing 2. Sectionfeaturesde-
scribes its interface:event portsfor in/out communication
to halt/resume the thread execution. Two concurrent threads,
ThA and ThB, manage the application context (component
The_Shared_Data) and take care of variables consistency.

p rocess A p p l i c a t i o n
f e a t u r e s

InA : in event por t ;
InB : in event por t ;
OutA : out event por t ;
OutB : out event por t ;

end A p p l i c a t i o n ;

p rocess implementat ion A p p l i c a t i o n . impl
subcomponents

ThA : thread t h read w s ta te A ;
ThB : thread t h read w s ta te B ;

connec t ions

por t InA −> ThA . InA ;
por t InB −> ThB . InB ;
por t ThA . OutA −> OutA ;
por t ThB . OutB −> OutB ;

end A p p l i c a t i o n . impl ;

thread t h read w s ta te A ;
f e a t u r e s
InA : in event por t ;
OutA : out event por t ;
The Shared Data :

requ i res data access Shared Data . Impl ;
p r o p e r t i e s

D i s p a t c h P r o t o c o l => P e r i o d i c ;
Per iod => 500 Ms ;
Compute Execut ion Time => 0 ms . . 200 ms ;
Dead l ine => 500 Ms ;
I n i t i a l i z e E n t r y p o i n t S o u r c e T e x t => ” I n i t S p g ” ;

end t h read w s ta te A ;

Listing 2. AADL PBR case study : Application process

Listing 2 also describes one of these thread interface
(thread_w_state_A) and provides information: initialization
subprogram, type of thread (e.g periodic), period, etc.

3) The SharedData Data Component:Since the appli-
cation context is manipulated by two threads, we use the
AADLv2 dedicated pattern to specify shareddata compo-
nents. ConcurrencyControl Protocol selects a concurrency
management policy supported by the AADL runtime (here,
Priority Ceiling). Provides subprogram accessdefines the
subprograms to be used to access data that will be required
by threadsThA andThB. This is depicted in listing 3.

data Shared Data
f e a t u r e s
Update : prov ides subprogram access Update ;
Read : prov ides subprogram access Read ;

p r o p e r t i e s
P r i o r i t y => 240;
C o n c u r r e n c y C o n t r o l P r o t o c o l => P r i o r i t y C e i l i n g ;

end Shared Data ;

data Shared Data . Impl
subcomponents

S t a t e : data ;
UpdateSpg : subprogram Update ;
ReadSpg : subprogram Read ;

connec t ions
Cnx1 : subprogram access UpdateSpg−> Update ;
Cnx2 : subprogram access ReadSpg−> Read ;

end Shared Data . Impl ;

Listing 3. AADL PBR case study : shared data

4) The Replica Controller Process Component:The replica
controller process (see listing 4) contains a thread synchro-
nizing actions. Sectionconnectionsshows the links between
between this thread and the replica controller process through
ports.

We focus here on the description of the different execution
modes of the process. Properties, components and connection
can be mode-specific. The keywordsin modesallow to specify
the mode in which the component is involved.

p rocess R e p l i c a C o n t r o l l e r
f e a t u r e s

InA : in event por t ;
InB : in event por t ;



OutA : out event por t ;
OutB : out event por t ;
SnapshotRcv : in event data S t a t e ;
SnapshotSnd :out event data S t a t e ;
I s P r i m a r y : in event por t ;
I sBackup : in event por t ;
I s E l e c t i o n : in event por t ;

end R e p l i c a C o n t r o l l e r ;

p rocess implementat ion R e p l i c a C o n t r o l l e r . imp l
subcomponents

ThA : thread t h r e a d s n a p s y n c
in modes ( Pr imary , E l e c t i o n , Backup ) ;

connec t ions
por t InA −> ThA . InA in modes ( Pr imary ) ;
por t InB −> ThA . InB in modes ( Pr imary ) ;
por t ThA . OutA −> OutA in modes ( Pr imary ) ;
por t ThA . OutB −> OutB in modes ( Pr imary ) ;
por t ThA . SnapshotSnd−> SnapshotSnd

in modes ( Pr imary ) ;
por t SnapshotRcv−> ThA . SnapshotRcv

in modes ( Backup ) ;
modes
−− modes
Pr imary : i n i t i a l mode ;
Backup : mode;
E l e c t i o n : mode;

−− t r a n s i t i o n s
Backup −[ I s E l e c t i o n ]−> E l e c t i o n ;
E l e c t i o n −[ I sBackup]−> Backup ;
E l e c t i o n −[ I s P r i m a r y]−> Pr imary ;

end R e p l i c a C o n t r o l l e r . imp l ;

Listing 4. AADL PBR case study : Replica controller process

The operational modes of replicas described in II are
primary, backupandelection. Mode transitions are explicitly
defined by the syntaxmode initial − [event triggered]− >

mode f inal.
Mode switch is synchronized with events occurring from

ports. For example, when the replica controller inbackupmode
receives aIsElectionevent, then the process switches to the
electionmode.

C. Checkpoint synchronization and watchdogs

AADL models of the application and the replica controller
have been presented but there is still no description of the
checkpointing and watchdog services.

The checkpointing service has to enforce a rendez-vous. It is
has to block threads until all participants reached the rendez-
vous. Then the controller saves the copy of the application
state, and releases application thread executions.

There are two reasons for suspending a thread: when it is
waiting for a dispatch trigger, or when is waiting for a shared
resource. In the first case, it is easy to control how the thread is
wake-up by sending an event on one of its ports. A thread will
reach such dispatch state at the end of a call sequence. These
particular states can be used to set up rendez-vous between
threads.

In the second case, a Concurrency Control Protocol defines
how critical sections associated to shared data should be
protected. One of the proposed protocol uses subprograms
implementing the usual lock and unlock primitives (mutexes)
to enforce mutual exclusion. These primitives can be used to

program more complex synchronization services. So, synchro-
nizations can be either defined at the thread or subprogram
level but through different mechanisms. Next section will
highlight the fact that describing the implementation ”from
scratch” with rendez-vous is easier at the thread level.

The heartbeat watchdogs are often implemented with soft-
ware timers. No timer services are directly available in AADL.
Nevertheless, the concept of dispatch on timeouts can be found
in the AADL-BA. We show in next section how to define a
watchdog as an additional dispatch condition for the replica
controller thread component.

IV. AADL B EHAVIOR SPECIFICATIONS

The AADL Behavior Annex provides an extension to spec-
ify the behavior attached to AADL components. The intend
of this annex is to refine the implicit behavior specified in
the core language. Thus, it is possible to attach a description
called behavioral specification to each AADL component
using AADL annex subclauses.

The AADL-BA defines several languages. A state/transition
automaton describes component behavior. A dispatch condi-
tion language refines thread dispatch behavior. An interac-
tion operations language specifies component interactionsas
communications through ports, parameters, subprogram calls,
etc. The action language combines basic control structures
(loop and test) with subprogram calls and port accesses.
Then, behavioral actions are attached to transitions of the
component automaton. It can be seen as a kind of abstract
code snippet bound to transitions. It is a major extension of
the expressiveness of the AADL core language.

Finally, an expression language provides logical, relational
and arithmetic expressions to manipulate variables.

In this section, we do not detail the expression language
which syntax is very close to the one provided by Ada.

A. The Behavior Specification

A behavior specificationis expressed as a state transition
automaton with guards and actions. Guards and actions uses
variables to manipulate data.

The automaton is used to specify the sequential execution
behavior of subprogramand dispatch protocol. Input and
output behavior of AADL threads or devicescan also be
expressed by an automaton. Finally, it can also specify the
dynamic behavior of aprocessor a system.

Local variables (non-persistent) can be used to save in-
termediate results. State variables specified by the keyword
persistentor referencing an AADL data component can be
used to reduce the size of the state automaton by keeping
track of counts for instance.

A behavior automaton starts from aninitial state and termi-
nates in afinal state.Completestate represents a suspend/re-
sume state out of which threads and devices are dispatched [9].
Remaining states are called execution state and represents
intermediate state of the automaton.

A transition represents a change from the current source
state to a destination state. A transition is activated whenits



dispatch or execute condition is evaluated to true. Then the
attached action is executed.

Dispatch condition affect the execution of a thread based
on external triggers. Execute condition model behavior within
an execution sequence of a thread, subprogram or other
component. They are based on input values from ports, shared
data, parameters, and behavior variable value [9].

1) Subprogram Behavior Specification:The initial state of
the subprogram behavior automaton represents the starting
point of a call. The final state represents the completion of
a call. The automaton describes the execution behavior of a
subprogram with one or more return points [9]. Its has one
or more intermediate execution states but cannot contain a
complete state.

2) Thread and Device Behavior Specifications:The be-
havior automaton of thread or device components describes:
one initial state representing the state before initialization
actions; one or more complete state representing halt/resume
state; zero or more intermediate execution state and one final
state representing finalization completed by thread or device
completes.

The behavior of a thread dispatch is a dispatch condition
evaluates to true and then the transition (outgoing of a com-
plete state) is taken. Action associated to the transition are per-
formed. Periodic dispatches are implicit. Sporadic dispatches
can be triggered by the arrival of event, data, event data
on ports or the call to provides subprogram access features.
AADL-BA describes timeout for thread dispatch with the use
of on dispatch timeoutas dispatch condition. Timeout is a
dispatch trigger condition raised after the specified amount of
time since the last dispatch [9].

The thread behavior automaton are consistent with the
thread states/actions described in the core AADL language [1].
We identify the same states named differently. The initial state
corresponds to the halted state. The complete state represents
the awaiting dispatch state. Final state represents the stopped
thread state.

3) Other Component Behavior Specifications:The automa-
ton of other components (process, processor, etc) starts with
one initial state representing the state before initialization, one
ore more complete states and one final state representing the
state after finalization [9].

4) Component Interaction Behavior Specifications:As said
above, AADL threads interact through shared data, connected
ports and subprogram calls. AADL-BA provides mechanisms
to model the behavior ofevent data ports, data portsor event
ports. Thus, behaviors and policies governingdata port and
event data portqueues (e.g dequeue protocol) can be specified.

Frozen ports mechanism can be used to ensure availability
of received data on a port after thread dispatch occurs. Send
and receive outputs -described by shortcut operators- through
ports can be specified.

The standard defines several ways to model access to shared
data subcomponents (see next subsection).

Finally, interaction between components using subprograms
can also be specified by subprogram access, using the syntax

Mysubrogram!or Mysubrogram!(param1,...paramN). This call
to subprogram access is defined in the actions attached to
transitions.

B. Chekpointing Implementation

1) Shared Data Semantics:The standard defines three ways
to model critical section in order to access shared data.

a) The smaller action block:A smaller action block
encapsulates the shared data subcomponent reference with the
use of ’{’ character and ’}’ character as delimiters. The annex
specify that if an action block contains references to several
shared data subcomponents, then resource locking will be done
in the same order as the occurrence of the references to the
shared data subcomponents. Resource unlocking will be done
in the reverse order [9].

b) Provides subprogram access:Appropriate provides
subprogram access of the corresponding shared data compo-
nent can be called in actions associated to transitions. These
provides subprogram access must be explicitly defined to
implement the concurrency control protocol which coordinates
accesses to shared data.

c) Get resource and releaseresource runtime services:
Get resourceand releaseresourceruntime services specified
in the runtime support of the AADLv2 standard [1] can be
manually inserted in actions attached to transitions.

According to the AADLv2 standard, the user can also
provide specific implementations ofget resource and re-
lease resourceat execution platform level.

The small block action is easy to use. It allows implicit
and automatic placement ofget resourceandreleaseresource
services by the use of ’{’, ’ }’. However concerning modeling
complex critical section as multiple data shared and multiple
lock/unlock, the semantic defined is not precise enough.

The use ofprovides subprogram accessimplies to check
all subprogram access and subprogram implementation to
avoid run-time violation. So, systems analysis becomes more
complex.

The use ofget resourceand releaseresourceruntime ser-
vices is very expressive to model access to critical section.
The user can specify easily with subprogram calls where is the
begin and the end of the section for simple synchronization
schemes.

In the case if the user provides specific implementations of
the get resourceand releaseresourcesubprograms, then he
has to insert by hand the calls to these subprograms in AADL-
BA specification. Nevertheless, the standard does not provide
any guidelines to specify the behavior of these subprograms.

Thus, we prefer to use AADL ports to model the synchro-
nization barrier used in the check-pointing mechanism.

2) Modeling Challenge and Complexity:Synchronization
for checkpointing requires to specify a complex synchro-
nization mechanism between threads. We have mentioned in
section III that the core AADL allows the description of
synchronization mechanisms between shared resources (data).
Subprogram accesses or events sent on connected ports are
also involved to model these check-pointing mechanisms.



The listing 5 depicts the behavior automaton of thread
thread w state A contained in the application process. The
thread behavior automaton has one initial statesi, two com-
plete statess1, s2 and one final statesf.

annex b e h a v i o r s p e c i f i c a t i o n {∗∗
s t a t e s

s i : i n i t i a l s t a t e ;
s1 , s2 : complete s t a t e;
s f : f i n a l s t a t e ;

t r a n s i t i o n s
s i −[]−> s1 { I n i t S p g ! } ;
s1 −[on d ispa tch]−> s2 { Computat ion1 !

OutA ! } ;
s2 −[on d ispa tch InA]−> s1 { Computat ion2 ! } ;

∗∗} ;

Listing 5. AADL-BA PBR case study : thread behavior autamaton

When the transitionsi to s1 triggers, theInitSpgsubprogram
specified in the actions section (’{’...’};’ section) is called to
initialize the thread.

Complete statess1 and s2 are waiting states used when
the thread waits for dispatch (execution). At the first dispatch,
the transitions1 to s2 triggers and the actions attached to the
transition are executed. Thus the subprogramComputation1is
invoked and theOutA! produces an event on the event port
OutA. This signal corresponds to a situation in which the
thread has completed its works and waits in states2 for a
signal InA to resume.

The synchronization protocol is described through transi-
tions triggered and actions executed betweens1 and s2. s2
is the rendez-vous state.OutA event is the notification that a
thread reach the rendez-vous.InA is the event received when
checkpoint is completed.

C. Heartbeats Protocol Implementation

In this subsection, we describe how to use AADL-BA to
model the behavior of the heartbeats protocol using AADL-
BA timeout for backup replicas.

The heartbeat protocol used in the PBR architecture relies
on a timeout that is triggered once the specified amount of
time since the last dispatch has expired. The timeout value is
given by thePeriod property of the thread.

Listing 6 depicts the behavior automaton of the thread
contained in the replica controller process (backup replicas)
including timeout. We give a simple description for better
understanding. Thestatessection declaressi as initial state
(before thread initialization),s1 as complete state (for dis-
patch) andsf as final state.

When the thread starts, initialization is due by invoking
the InitSpg subprogram. The transition starts from the initial
statesi and stops in thes1 complete state. When the thread
receives a InA event, the condition on dispatch InA is true,
the transition betweens1 to itself triggers.

Thus,ReceiveSnapshotandStoreSnapshotsubprograms are
called (see actions section attached to the transition).

annex b e h a v i o r s p e c i f i c a t i o n {∗∗
s t a t e s

s i : i n i t i a l s t a t e ;
s1 : complete s t a t e;

s f : f i n a l s t a t e ;
t r a n s i t i o n s

s i −[]−> s1 { I n i t S p g ! } ;

s1 −[on d ispa tch InA]−> s1 { Rece iveSnapsho t ! ;
S t o r e S n a p s h o t ! ;} ;

s1 −[on d ispa tch t imeout]−> s f { O u t E l e c t i o n ! } ;
∗∗} ;

Listing 6. AADL-BA PBR case study : timeout

We focus now on the dispatch timeout. According to the
semantics of the AADL-BA the timeout occurs when the
period of the thread expired. The thread is in states1when the
timeout triggers. If the backup replica controller processdoes
not receive the snapshot (i.eInA) then the timeout triggers.
The transition betweens1 andsf with theon dispatch timeout
condition occurs. The performed action (OutElection!) is the
emission of an event on the OutElection out event port. This
event is transmitted to other backup replica controller process.
Then the reception of this event triggers the mode change into
replica controller process.

V. D ISCUSSIONS

PBR has been selected because of it complex behavior
even when no crash occurs. This section reports comments
and advices for people already using the core language and
interested in using the behavioral annex.

A. Synchronization on Port or Resources

The core language explains how threads can be synchro-
nized with dispatched events. A reception on a port can be
used to release an execution. AADL-BA provides an automata
based representation to describe the call sequences executed by
threads and the state on which they are waiting for dispatch.
This state base representation clearly identifies states where
the application can be blocked. This annex strongly improves
the readability of thread behaviors in a specification. However,
it does not help to decide when shared resources should be
preferred to complex synchronization protocols and vice-versa.

Thus, design strategies are required to understand conse-
quences of describing synchronization patterns inside threads
behavior. If we want to define reusable synchronization ser-
vices, then ports and dispatch conditions are not satisfactory.
Thread behavioral models are not modular enough: all dis-
patch conditions have to be defined in the same automata.
Only subprograms models can be nested and reused in other
subprograms. A rendez-vous protocol defined in behavioral
models of subprograms can only rely on the semantics of the
locking primitives GetResource and ReleaseResource.

B. Get Resource, ReleaseResource Semantics

AADL proposes to infer critical regions from the archi-
tectural description, or from AADL-BA action blocks. The
standard let also to designers the opportunity to insert explicit
calls to Get/Release to suspend/resume threads. If Get/Re-
lease primitives are not necessarily paired in subprogram
descriptions, then the rendez vous could be implemented. Note



that POSIX implementations [10] consider this construct as
erroneous. If designers follow this strategy, then the standard
explains that it may not be compatible with the AADL
semantics of critical sections protection. Then, the whole
synchronization policy has to be checked again.

Despite this modeling issue, AADL-BA provides an inter-
esting additional strategy to define critical regions: smaller ac-
tion blocks. Smaller action blocks define boundaries of critical
regions for shared data. Action blocks can be seen as simplified
programs that refine the notion of call sequences from the core
language. Such critical regions have the same problem than the
ones defined by require/provide data access. If critical regions
of distinct shared data overlap, then Get/Release have to be
inserted in the correct order to avoid deadlocks.

C. Timeout on Thread Dispatch

In AADL, a timeout allows triggering call sequences when
a dispatch is not performed in time. The deadline is defined
respectively to the previous dispatch of the thread. This mech-
anism has been used to implement successfully a watchdog for
the heartbeat protocol. The timeout dispatch condition in the
annex seems dedicated to avoid threads to be blocked waiting
for an event issued from their ports.

Watchdogs are also used to detect and interrupt programs
exceeding their worst case execution time. Timeouts do not
provide such a semantics. During the execution of an action
block, even if a timeout condition is met, threads have to
complete the execution of the transition prior to trigger the
timeout reaction. Such a semantics is safer than interrupting
subprograms that may hold locks.

VI. CONCLUSION

Due to the recent publication of AADLv2 and AADL-BA
(this annex will soon be in informal ballot), it is of interest
to check if engineers can use both AADLv2 and AADL-
BA safely (e.g. in a consistent way). For that purpose, we
model the PBR (Primary Backup Replication) strategy that is
a typical fault-tolerant mechanisms for Distributed Real-Time
and Embedded (DRE) systems.

Unsurprisingly, we successfully modeled the PBR architec-
ture. However, it was more difficult for the behavioral part.
For instance, we had to relax some of our initial requirements
to reach our objectives. The main difficulty resides in the
design of complex synchronization mechanisms such as await
dispatch or mutual exclusion that are commonly required in
distributed system design.

There seems to have two approaches driving the definition
of AADL-BA. The first one proposes very strict semantics
rules that are consistency with the core language at the
architectural level. The second one seems to significantly relax
the consistency rules (lock/unlock, timeout). The behavioral
part of a component may be incompatible with the initial
semantical expectations of an AADL component.

Of course, tools may help designers to explore their design
from the behavioral description as it is now the case for the
architectural part. However, in a MDE-based approach, it may

be unsafe to have semantical rupture when engineers come to
define precisely the behavior of the system.

This paper is a contribution to outline such difficulties and
serve as a basis to enhance the standard through discussion in
the standardization committee.
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