A Petri Net based Runtime Monitoring Method
for Web Services specified with BPEL

Jun Zhu Fabrice Kordon
School of Computer Science LIP6 - CNRS UMR 7606
National University of Defense Technology Université Pierre & Marie Curie
Changsha Hunan 410073, China 4 place Jussieu, 75252 Paris Cedex 05, France
Email: mail.zhujun@gmail.com Email: Fabrice.Kordon@lip6.fr

Abstract—BPEL (Business Process Execution Language) is Colored Petri Net [7] (CPN), a formal description technique
one of the dominant ways to specify interactions between Web suitable to capture concurrent behavior. We then generate a
services. However, it is difficult to deal with behavioral pioperties runtime monitor capturing communications from/to the WS

of web services. Typically, well defined protocols may be viated - . . .
by clients, thus leading servers to inconsistent states. and using the CPN description to detect inappropriate use of

In this paper, we propose to tackle this problem thanks to the protocol. Our monitoring approach hdessage Oriented
an automatically generated runtime monitor from the BPEL The execution of the generated monitor is driven by the
specification. First, we extract a web service protocol fromits captured SOAP messages.

specification. Then we generate a monitor capturing communi Contents: Section Il briefly presents some related work
;?;'t%gsolf_mm/to the server and detecting inappropriate usef this about formal representations of Web service behaviors and

monitoring techniques. Section Il details the way we trans

|. INTRODUCTION form a BPEL description into Petri Nets and build the as-

Context: BPEL [17] is an industry standard proposed bgociated WS monitor. Finally, Section IV shows, based on
OASIS and supported by major service providers such as IBRKperiments, that our approach can be efficiently operated.
Oracle, Sun, etc. It is one of the dominant service comositi 1. RELATED WORK
descr|pt|_0n Iang_uages for Web Services .(WS)' BPEL e.XtendSRelated work is divided in two parts: formal representation
the WS interaction model to support business transacnons.of BPEL specifications and monitoring techniques

The main objective of BPEL is to define protocolse('
exchange of messages) between several Web services cOdmFormal representations of BPEL specifications
posed to perform advanced functions. In this composition, Several approaches have been introduced to capture the
a single BPEL process needs to converse with other V¢8mantics of BPEL by means of formal methods, such as
(usually calledassociated W)Svia ordered interactions basedorocess algebras, automata or Petri nets. The purpose is to
on SOAP (Simple Object Access Protocol) messages. As/eérify some properties on the WS composition. We do not
result, the composition, as a new single WS, establishesaien at providing a full presentation of related work, we only
newinteraction (conversation) protocolvhich corresponds to try to identify some typical approaches in the domain.

a new autonomous behavior. Process algebrasProcess algebra is used as a formal
Problem: However, it is difficult to deal wittbehavioral basis to analyze BPEL specifications [9], [5], [19]. [9] exgs
propertiesof WS compositions. Typically, well defined proto-BPLE interaction thanks to Process Algebra. [5] defines a
cols to request servers may be violated by clients (or aaati mapping from BPEL to process algebraic LOTOS to verify
WS), thus leading servers to inconsistent states. There issome temporal properties. [19] uses CCS to describe and

guarantee that clients and associated WS behave as expeesdidate interactions between Web services.

because na@onformancebetween WS interactions and their ~ Automata: Various classes of automata are also used

specification is guaranteed in current systems. to model BEPL constructions such as plain automata [6] or
When a WS runs, protocol messages are the only eviderticee automata [4]. The result of the mapping can be used to

to check if the interaction protocol corresponds to its fffzee = compute both qualitative and quantitative properties kkan

tion. This conformance concerns both clients and assatiateodel checkers. In [6], some LTL properties are verified with

WS. Soruntime monitoringon such messages is a way t&PIN. [4] presents how web services can be translated into a

perform conformance checks and evaluate whether interacti timed automata to be processed with UPPAAL.

comply with the BPEL specification. Petri Nets: Several studies propose to map BPEL to P/T

Contribution: This paper aims at proposing a solutiomets:
to check for protocol conformance at runtime. To do so, « The BPEL2PN tool proposes a Petri net-based semantics
we automatically generate a runtime monitor from the BEPL for BPEL. It deals with standard behaviors and exception
specification. The BPEL specification is transformed into a handling [10].

o The BPEL2PNML tool focuses on the BPEL controlB. Monitoring techniques

flow constructs. It uses the model to detect unreachableThe community elaborated numerous monitoring tools for

activities and conflicting messages [18]. WS. We divide them in two categories depending on the way
« The BPEL20WFN tool uses a special class of Petri netgonitor are processedffline and online monitoring.

(open workflow net) to model the interactional behavior Offline Monitoring: [21] proposes a representative solu-

of BPEL specification [15]. It checks static analysision of such approaches. Petri nets are derived from BPEL

requirements available in BPEL such as cyclic contr@pecifications. Traces of SOAP messages (from logs) are

links or illegal access to non initialized variables. used to check conformance of the execution against language

Since we aim at the production of a monitor capable @ssociated to the Petri nets.
dealing with several simultaneous sessions, we need cblore Such approaches apast mortemand thus out of the scope
tokens to differentiate them. Thus, if some of the propos&@j our work. We want to trigger actions when problems are
transformation patterns can be reused, they must be adapté@tected at runtime. _ _

Other works deal with CPN. In [24], an interesting approach Onl|ne_ M(_)nltonng: Cont_rary to the previous techmql_Je,
is presented to verify Web services composition. They rely online monltc_mng occurs during the ex_ecutlon of web sa¥sic
the BPEL specification but do not provide precise mapping® [3] Provides a proxy-based solution to support the exe-
rules to CPN. However, they identify the important BPEL cution of monlltorllng rules at runt!me. I'F uses a method
constructions that capture the behavior of a WS. to weave monitoring rgles: dynamically into the process.

Such rules are better defined in [22], [20]. However, they * [13_] proposes a monltor_lng framework for_WS Inter-
use a specific class of Petri nets: Workflow nets. But, even if act|(_)ns. It mo_mtors_ the m_teractlonal _behawors of WS
several rules can be reused, the authors focus on data flow againstpre-defined interaction constraintbat are used

more than on the control we consider for monitoring (the tg ‘?'ete‘j protocol V|(.)Iat|ons._f. ion |
behavior we consider is the one of the interaction protocol) * [2] introduces a monitor specification language to express

Summary: all the presented approaches are relevant to boolean, statistic and time-related properties of a single

) BPEL session. The authors propose a solution to translate
represent the behavior of a system. However, we chose CPN P .
. . the specification into Java code to implement the WS
(as in [20]) the three following reasons.

Fi CPN h ically founded deli monitor; this solution handles one session only.
. Irst, FIN are a mat_ ematically founde modaeling hota- [16] proposes a monitoring approach by intercepting
tion [7], with a large variety of powerful analysis tools.

events exchanged between the composed processes. The

Second, a CPN based representation of BPEL behavior is 555:6ach can check for violations of behavioral properties
much more compact than an automata-based one. This is 5nq additional monitoring requirements specified in a

particularly true because we deal with simultaneous seSsi0 ind of event calculus

@n WS. The_ number of sessions_ mu_st be bounded, Sincei:rom the point of view of acquiring information for moni-
|mple_mentat|(_)n Fjoes not alloyv an infinite number of Para"%ring, the weaving of monitoring rules ([3]) is very intius.
Sessions. Th's IS not a major drawback. The Petri net IBinfluences the execution of composed WS and decreases
used to guide the execution and not to generate .the fu_II stgie performance of the involved servers. On the contragy, th
space; so, there are only a limited number of conﬁguratlonsﬁ]essage catching mechanism used in [16], [12], [13] and [2],

s:corﬁ S|multaneo_usly (\c/jve fonly deal |W|th a few current statg much better in terms of intrusiveness and performance. As
of the system) instead of a complete automaton (or pu result, our approach adopts a similar solution to intercep

down automaton) in most current monitoring approaches [ZQOAP messages as events for monitoring.

Moreover, since CPN allow us to identify sessions, protocol grom the point of view of monitoring methods, [13] relies

violations can be unambiguously and precisely identified. o constraints definition, [2] defines a specification langua
Third, it is known that Petri nets are suitable to expresgy the monitor, [3] uses self-defined monitoring rules abé][

the semantics of business processes [22]. They also provegsgs event calculus to describe monitoring requiremerts:-H

strong basis for computer-aided modeling and formal verificeyer, the use of such constraints are dedicated to specific

tion, especially in the control part of distributed systems jpjations detections of the involved protocols. So, tovie
Among the various types of Petri nets, it appears that P4lir monitor with a more accurate view on the protocols to be

Nets-based approaches generate larger specification.-M@f@nitored, we chose to rely on the BPEL specification that is
over, we produce a more compact specification of the prosoc@lgnsformed into CPN.

by using of colored tokens to identify sessions. This also en Summary:Due to the limitation of post mortem methods,
ables a dynamic (but bounded by the color types) managemg@t do not adopt offline monitoring. We prefer online moni-
of sessions. toring since it enables the activation of actions, whengquok

Most current studies producing Petri nets from BPEL geniolations are detected during the monitored WS execution.
erate models that are too complex for monitoring because thaVe prefer to use message catching approaches instead of
proposed patterns contain too many details that are udelesscode instrumentation methods in order to reuse WS sources
message-oriented monitoring. However, the patterns gegpo“as is”. This code is transformed into a CPN that represents
in [20] are simpler ; we reuse some in this work (section I)I-A the protocol reference.

BPEL Petri Net Model e Name Invoke
Description Transformed from Monitor Parsing of a<i K | ith tw iables:
BPEL Activity___ BPEL Process Code precondition | | ing of a<invoke> lexeme witl 0 variables;
Transformation Rules Generation i nput Vari abl e andout put Vari abl e.
Verification Runtime monitoring eo P INV F
<¢> T_INV_IN
Figure 1. Overview of the Approach c>—>(Q) MSG_INV_IN
<c>
Mapping
to CPN P_INV_TEM
¢ T_INV_OUT
I1l. BUILDING A MONITOR FROM ABEPL DESCRIPTION E%“—<“>—OMSGJNV70UT
This section details how we build a monitor from a BPEL éé PLINV_L

description. This process is divided in two steps preseinted

figure 1: the transformation of a BPEL specification into a
CPN and then the generation of a monitor embedding this
CPN to be used as a description of the reference protocol. Letrpe ryle presented in figure 2 transforms a BPEL ba-
us note that the produced CPN can also be used for verificatign activity invoke (request-response) into a CPN. It is

puUrpose. activated when arxinvoke> with i nput Vari abl e and

. out put Vari abl e is parsed. The outgoing request mes-

A. BEPL to Petri Net sage of the corresponding sessian € C) is dropped in
CPN Model for Composed Service Processt us first placeMsG_| NV_I N by the transitiodl _| NV_I N. The return

informally define CPN (more details can be found in [7])message is consumed by transitibnl NV_OUT fromq place

This definition introduces entities suitable for the dgstton MSG | NV_OUT. P_I NV_F is the source place of the pattern

of WS. andP_I| NV_L is the sink place.

Definition 1 (CPN): ACPN N is a tuple(P, T, F,C), where: When the invoke is one-way, the produced CPN contains

1) P is a finite set of places; T is a finite set of transition@nly the request sending. This is handled by a variation of
(PN T =); Fis a finite set of arcsK C (P x T) U this rule dedicated to this particular case.

(T x P)); C is a finite set of colors. The rule presented in figure 3 transforms a BPEL structured

2) P = P; U Py with Pr N Py = 0, whereP; is a set of activity switchinto a CPN. It is activated when aswitch>
i nt er nal places and®, is a set ofrtessage places, with at least onecase alternative (and possibly an optional
corresponding to the connection messages in procegementot her wi se) is parsed. Each alternative is mapped
This partition separates places for the control flow db a dedicated conditional branch. The optioother wi se
the protocol £;) from the message flowH,). element is mapped to a default branch (if there are no satisfie

3) C is the color set deduced from the WS sessions (eacbnditions, theot her wi se branch is chosen thanks to the
value represents one interaction with a client or amssociated guard computed from the negation of all other
associated Ws). This allows to identify sessions, eagiiards).BLOCK frames stand for the model deduced from
one executing the protocol (described with BPEL). the instructions of the associated alternative.

4) F = F;y U Fy with Fr N Fyy = 0, whereFr C (Pr x Concatenation of CPN Patternssince all transformed
T)U (T x Pp) is a set of arcs andy, = Fit U Fy, patterns begin and end with places (source place and sink
where Ff C (P x T) represents incoming messageplace), composition can be achieved by place fusion.
arcs andry; C (T x Pyr) represents outgoing messages Figure 4 explains how two CPN patterns derived from two
arcs. successive BPEL instructions are composed. We provide an

We noteep € T (resp.et € P) the predecessors of plape example in figure 5 where the rule is activated fori amvoke

(resp. transitiort) andpe € T' (resp.te € P) the successors
of placep (resp. transitiort).

Figure 2. Transformation Rule for the BPEL Basic Activityvoke

. . . . Name Switch
Transformation Rulesas mentioned in section II-A, we :) :
reuse some interesting patterns from [20] with some adapta- | Precondition Parsing of acswitcf> lexeme with at least onease.
tions, such as pattermsceive reply, sequencetc. Due to lack T SW_CASEI T SW OTHER
of space, only two typical BPEL activities (one basic atyivi oo S
: o ; [~(CONDI & -
— invoke— and one structured activity switch) are presented. é & CONDn)| (')
They show how to map BPEL constructions to a CPN pattern. | yaiing < <
Other patterns are defined in a similar way. Each presentedru | to CPN :'_'_'_'_'.fé'&;g_f_f{_'_'_'.') E::Eg%@::?
has a name, a precondition to be satisfied to operate the rule, (5 é
and defines a mapping to CPN. Let us note that each CPN <& bW L <
pattern has two special places: one source pjacgwhere .—L.\@?;O;__@__—.—Lu
ps € Pr with ep; = () and one sink placg; (wherep; € P;

with pe = (). Figure 3. Transformation Rule for the BPEL Structured AgtiSwitch

Name Concatenation of patterns B mmmmm e m e e e

Two given CPN patterns issued from two successive BPEL -agtiv

" -
Precondition| e Ny — (Py, Th, Fy, C) and No = (Pa, Ts, Fa, C). Receiver SOAP Message
Effect . - d> ;

on CPN Concatenated CPW = (P, T, F,C) = Ny + N> where: @

Reports, Logs,
Alerts, ..

1) source place ofV5 is merged with sink place aNy,

2) P = Py UP>\ {p1:} wherepy; is the sink place of
N1 (fusioned with the source placg;; of Na),

3) T =T, UTs, -

4) The composed arc s = (Fy U F» U Fa)\Fp L eietutelniteie ittt e ottt beteebeteielettelettseiininipatatel

) - = n
where Fa = (ep1; X {p2s}) represents the createfl i
arcs from predecessors of plagg; to place p,; and (BPEL Process) (Applet
Fp = (ep1; X {p1i}) represents the deleted args R

Progess Execution Engine (ODE etc.) Fnr:/ard

t SOAP Messages
f \SOAP Engine (AXIS2 etc.)

\

—t

associated to the deleted plage; .

Remark: the color seC remains the same all over the CP
patterns produced from the whole BPEL specification.

Figure 4. Transformation Rule of Pattern Concatenation P\liddleware (CORBA etc.)

\

\
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|

...... } Process Execution Environment,

followed by aswi t ch.

Reducing the CPN complexityour composition mech-
anism may lead to large models when BPEL specifications
are complex. To avoid this, we apply the CPN reduction o o)
rules defined in [8]. They reduce the complexity of the Monitoring module: the monitoring module includes
resulting CPN by suppressing objects without changing i{aree components: the Message Receiver (MR), the WS Ana-
behavior. Of course, transitions and places corresporting'yZer (WA) and the Reports & Alerts (RA).

monitored events (like message reception or emission)atann Theé MR encapsulates the message catching mechanism
be suppressed. and ensures independence from its implementation. It fzuffe

messages and delivers them to the WA in the same order as
they were received.
The WA is generated from the CPN model. It is executed
The architecture of our WS monitor is depicted in figure @nd synchronized with the caught messages to set up, thread
We identify two major components: the message catchipgr thread, the evolution of the WS protocol. If no transitio
mechanism (A) and the monitoring module (B). can be fired in the CPN, the protocol is violated. This event
Message Catching Mechanisnthe message catchingis then passed to the RA.
mechanism captures incoming and outgoing SOAP messageshe RA is notified when a problem occurs and handles it
and passes them to the monitor module that checks if thecordingly to its configuration. The security manager a&n s
message is valid or not against the protocol model expressgflactions to be taken such as reporting in a log, executing
with a CPN. some dedicated code, filtering requests from the machine
To capture SOAP messages in real time, we rely on the uxecuting the involved client or just stopping the WS.
derlying communication mechanisms. For this experimest, w The monitoring module gets all caught messages and checks
chose Apache ODE and AXIS2 [1] because they are two weif-they correspond to a correct state in the WS protocol. It
known and widely used open source execution environmefdfiows the algorithm depicted in figure 7. The initializati
for WS. Their flexibility allowed us to plug our approach forconsists in initializing variables such as the currenestdtws
experimentation purpose. sessions (usually handled by one dedicated thread), mgppin
of WS sessions to tokens in the CPN, message queue, etc.

Figure 6. Entire Architecture of WS Monitor

B. Architecture of our WS Monitor

N

i =>Qernwr INVOKEI e e
: <c> T_INV_IN I ! so Pattern Conca(enﬂlinn‘:
! <c>—»(@) MSG_INV_IN H ! PINVEF & H Start
g ' ' 7 '
i P_INV_TEM 1 H TINVIN = H Initial
1 R H ! v MSGINVIN |
| <
T_INV_OUT ' ' P_INV_TEM !
) - -
s 1 1 :, M,
! %"—‘”_. MSG_INV_OUT ' i < MSGINV_OUT 1 Receive a SOAP
! PNV L ' 1 T_INV_OUT <> | v
IV 3
. — s o | et
_________________________ T_SW_CASEI T_SW_OTHER 1 earc] N .
T T OW CAS < <e>e ot Exist
| T_SW_CASEI %« T_SW_OTHER Patt ! . P_SW_F] ! Instance-to-Analyzer Thread
<c> >, 1 attern | <c>[CONDI1] P> W1 <c> .
! e hswE \Concatenatior! [~(CONDI & -+ I Mapping Table
! <ciconpn SN oL e ! \ & CONDR)] | Create a New Analyzer
1 . 1
| & CONDn)] ! | < < | End ? Exist * Thread & Update
1 1 1 . i
! v v ! VOTTRIOGK T .. CTTTBIOCK ' Dispatch Message to Mapping Table
| BLOCK P DBLOCK ! H <> <> H Activate Report & Corresponding Analyzer Thread
! < < ' ! ! Alert Module & Trigger Process Checking N IE .
Il 1 i 'ormal Exectuion
LY s 19 Q
¢ . 1 P_SW_L Excepti
1 <c> <c> | | xception .
| é P_SW_L é H] '__L'\<C>z)«<“>/‘__'_' | Check if Comply Promote the
i <> < ! ! ! ith Expectati > Current Stat
v 20+ SWITCH] ~ S=======m=—mmmmmmmmmeem o - No with Expectation Yes urrent State
.

Figure 5. lllustration of CPN concatenation Figure 7. Algorithm of the monitoring module

roseqr QO

A el Do (C e ¥ T :
010 <c> <c> 1 ! 1

! e ! i ““T_0_4_FLOW_F i ! i

IP_0_0_REC_MSG S 0K ! 4 ' i

‘————————————————6——-' p--------- e - - E---gs--q--------- \ ! '
P_0_I_ASSIGN_L : | | i i

it A ; O<—<c:>—¢:,':1 | T_0_4_1_2_INVOndWay ':.YZ'—FC>—>O 1 |T05SW.ON <57 0.5 sW!

) i I PO4O00INVI <> T.0400INVOneWay | <> P_0l4_1.2 INVOnevay THERWISE S

: C>_:":]<c> H | OneWay_MSG P_0.410_0_INVOn H ! MsG ! 1 P !

i P02 INVReqRep_ T_02_INYRefjRep_REQ i T away L ' P_O_M_I_2_INVOneWay| L ‘--------- B bt
REQ_M! <c> = <c> T 1T T T | I [s

: Q_MSG 6 : : : C; : \ C; : ! G |

| P02 INVReqRep TEMY/ | i < | 70413 ke ek ' T 0.6 INVOeWa e !

i v ! {P_0_4_0_1_RECIMSG <S> T 0 410_1_REC | < PO 13RECMG| ~ Nommmnn Y<c2 P06 INVOnew,

! ()—<c>—>|:':1 1 R R e ;6---:- ------- 2 y_MSG

| P_0_2_INVReqRep_ g~ T_0}2_INYReqRep_RES H O— <> 04 FLOWL H

! RES_MSG | ! ! P_0_SEQ_L

L pozassion L O ! 1 P04.0SEQL "M P04 1 SEQ.Ly Y, -0-SEQ

Figure 8. CPN model generated from the ETA example

Then SOAP messages coming from the catching mechanidmThe Employee Travel Arrangements example

are treated one by one. Each message is associated with jget ys first use the service Employee Travel Arrangements
session that is mapped to a token. So, when a messagegipa) defined in [11]. It is a classical example of WS
processed, it is mapped to the associated token. If no tiamsi composition (see figure 9). It contains three typical streed

is enabled for this token, then the WA module detects gtivities f | ow, swi t ch and sequence, and three basic
problem. The algorithm is detailed in the next subsection. gctivitiesr ecei ve, assi gn andi nvoke. It also manages
three associated W®rployeeTravelStatudmericanAirlines
and DeltaAirlineg. It deals with 8 SOAP messages.

The WS analyzer module is automatically generated from
the CPN model and thus is a rigorous representation of the —t
BPEL behavior. The other modules of the WS monitor are = ... * --------- er"l?‘
reusable libraries. Code generation is done in three phases '

1) Collect statistic information about modehis informa-
tion (cardinality of Pr, Py, T, etc.) is used to size data i i, DS
structure and predefine the mapping of messages. I

2) Code generationthe WA is generated according to the ool
control flows defined in the CPN detailed below. g

3) Module integrationthe MR and RA modules are linked §
to the WA. The result can be deployed in the AXIS2 L N
WS execution environment where we chose to plug the
message catching system.

Generated code:each transitiont € T is mapped to Figure 9. The BPEL specification of the ETA example
a constant and corresponds ¢ase in a swit ch instruc-

tion where the corresponding code is inserted. We proceed The Generated Petri Netthe resulted CPN is presented
similarly with placesp € Py;. The switch is located in in figure 8. It has 21 places, 12 transitions and 34 arcs and is
al oop and implements the control flow deduced from thgroduced in less than 2 seconds. Dashed-line frames outline
BPEL specification. This code is executed by a dedicatgghjor portions of this net, to make a connection with the
thread associated with the associated session. corresponding BPEL activities. These frames are labeled to
The current state of a session is stored in a dedicatggtrespond to the elements outlined in figure 9. Gray places
variable (the maximum number of sessions must be configuigstrespond to SOAP messages.
for the WS). This variable is updated once the code assaciate The Generated Codefhe generated WS monitor for this
to places and transitions is executed. example is 1347 LOC in Java. Among these, the WA is 118
A message mapping function is produced fraf;, and LOC, the MR is 165 and the RA is 206. Code for MR and
allows the WA to interact with the message catching mechRA remains constant.
nism. Comparison to Other Tools:We also run our tool
on two other examples extracted from the community: the
IV. EXPERIMENTATIONS Loan Approval Process (LAP) and the House Loan of

This section illustrates our approach on several exampl&@nk (HLB) [17]. We processed these three examples with
These examples are treated with our prototype implememrtat??’PELZOWFNL [15] and BPEL2PNML [18]. The objective

based on th€oloane [14] Eclipse plug-inColoane is a free 1Development of BPEL2PN stopped in 2005. BPEL20WFN, its sssor,
software generic graphic editor. supports at least all its features.

C. Generating the WS analyzer

! - 2:Request
H <<invoke>>) ._._._ sRequest . » Employee
H Retrieve the employee Travel Status
i

travel status FReply! Web Service

E 5.1:Invoke
e » Delta Airlines
....... - Web Service

5.2:Call-back

<<invoke>>
Get ticket offer from
Delta Airlines

<<assign>>
Select American
Alirlines ticket

<<assign>>
Select Delta Airlines
ticket

<<invoke>>
Return the best offer

O ETA

Tools [[Place [Transition [Arc [[Code for WA

Example ETA (154 BPEL LOC) 6.0.20 and Apache ODE 1.3.3. We used Apache Jmeter

17 Total Activi|t|y (1 Ba|sic +6 Strucrured) |8| Messages 2.3.4 to measure the WS response time andptimep Unix
BPEL2PNML 118 116 313 || - .

BPELZoWEN 65 |84 249 - command to evaluate memory footprint.

Our ool T2t |12 34 [118LOC Memory footprint: it is qwtg small and never exceeded_
6 Total A Exanzgl‘sBLAP (9§ SPEL Lod():)4 " 6.47MB during benchmarks (this was measured for the moni-

otal Activity asic + tructure essages . - - -

SPELZPNML 57 %6 [T46] - toring of_numerous pgrz_;lllel session in the experiment summa

BPELZ20WFN [74 |87 [280 - rized in figure 11). This is due to the small size of the code and

Our tool _ [1|9 HL|B ?186 BPEL\ L?(»)OC)H 91LOC the fact that only a very few markings have to be maintained

xample

30 Total Activity (17 Basic + 13 Structured) 12 Messages by the WA. The n.umber of maintained mar.kmgs is strongly
BPEL2PNML [202 [195 [444][- related to the maximum number of WS sessions to be handled
BPELZ0WFN [143] 188 [542]] - by the system and thus. Thus, an appropriate configuration of

[Our tool [[50 [28 [84][394 LOC |

the system allows to control the size of required memory.
TABLE | Execution Overhead for sequential executiolet us
STATISTICS ON GENERATEDCPNAND MONITOR . .
first measure the execution overhead when the WS processes
sessions sequentially. To do so, we compare a set of WS

Rate of Detected Rate of Detected executions with monitoring to the same execution without
“bad” Clients Violations “bad” Clients Violations P : fot P
=5 1007 0% T00% monitoring. To evaluate_ pqtentlal variations on the impact
0% 100% 20% 100% of monitoring when realization of services require CPU, we
20% 100% 50% 100% introduce specific code that uses between 8 and 9 ms of CPU
TABLE I and a variablecode loopthat corresponds to the number of

EVALUATING PROTOCOL VIOLATION DETECTION RATE time this code is executed when a SOAP message is processed.

Figure 10 shows the response time measured by Jmeter. It
shows that, whatever the process time of a SOAP message

is to compare the size of the generated Petri nets (no cdget® overhead does not seem to be impacted. The observed
generation is offered by BPEL2PNML and BPEL20WFN)9verhead is about 5.5%. Here, we extracted our measure from
When available, all possible optimizations of these tootsay (1€ analysis ofl0” SOAP messages for each value aufde
activated. loop.

Table | compares the produced CPN with ours (light gra ; ,
lines). It shows that our patterns compete with other ones a%at our approach also stands for simultaneous executibns o
lead to smaller CPN. This is probably because our patte¥&>: We evaluate the response time when numerous clients
rely on the control flow of the WS protocol. simultaneously contact the WS we used for our sequential

Let us note that the WA generated for these examples§%€cution measures. In that experimestge loop= 35; The
also quite small as the last column shows. It allows a sm@fmber of processed SOAP messages is then10” and

memory footprint and does not overload the execution of thgdUuests are shared by the clierits.(10 simultaneous clients
web service. make2 x 10* requests each and 100 simultaneous clients make

2 x 103 requests each).
B. Evaluating Monitor Efficiency Performances are presented in figure 11. It shows that the

We first evaluate if protocol violations are appropriateljnanagement of parallel sessions has an impact on the WS
detected by our monitor. To do so, we run the WS and iggrformances (this comes from the WS execution environ-
associated monitor against “good” and “bad” clients. God#ent). It also shows that the monitor overhead also inceease
clients just behave correctly while bad clients generatdoan With the number of simultaneous sessions. This is due to the
violations at various stages of the supported protocol.

This experiment is reported in table Il for a rate of “bad”
clients varying from 5% to 50%. We then check if the number
of detected violations corresponds to the number of expecte
one. As the table shows, 100% of the violations were detected
and no false negative was observed. These experiments were
evaluated orl0° executions of the WS.

Execution Overhead for parallel executioio assess

120

—@— Measure without monitor
O+ Measure with monitor o)

o
5

@
S
L

@
=
L

IS
1)

C. Performance Evaluation

One key feature of program monitoring is non-intrusiveness
the monitor must be efficient in terms of memory and exe-
cution. Experimentation were done on two machines with a ’ . 2 . . . 0 12
Cored™ 2 Duo at 3GHz, 2GB RAM and running Mandriva Codeloop
Rel,ease 200,9'0 (Linux kerr_lel 2.6.27.14). The WS exeCUtIoF—]igure 10. Average response time for various execution e WS
environment is Java SE (build 1.615-b03), Apache Tomcat

Average response time (ms)

N

5]
L

Q

management of shared data structures required to maprsessio REFERENCES
to colored tokens. The ratio between the two curves hOWeVef; apache. Apache Axis2 User's Guide, http:/iws.apacigaxis2/1 5 1/

remains quite acceptable. userguide.html, 2008.

[2] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. = Riime
Monitoring of Instances and Classes of Web Service Comipasit In
4th IEEE International Conference on Web Services (ICWS'péges

; ; ; 63-71, 2006.
This paper presented a qwckly operable solution to aUtct3] L. Baresi and S. Guinea. Towards Dynamic Monitoring of WS

matically produce Web services (WS) monitors from BPEL ~ BpEL Processes. I8rd International Conference on Service-Oriented
specifications. To do so, we extract the protocol defined in Computing (ICSOC'05)pages 269-282, 2005.

T :] G. Diaz, J. Pardo, M. Cambronero, V. Valero, and F. Cuartdutomatic
the BPEL specification and encode it by means of COImeHl Translation of WS-CDL Choreographies to Timed Automata. 2iw

Petri Nets (CPN). These are then used as a compact way |ntemational Workshop on Web Services and Formal Methdt#S-(
to describe this protocol in order to detect violations from FM'05), volume 3670, pages 230-242. Springer, 2005.

; : g ;] A. Ferrara. Web Services: a Process Algebra Approach. 2rd
clients or associated WS. Monitoring relies on the Captur[:? International Conference on Service Oriented Computir@S(DC’04)

of incoming and outgoing communications. They provoke a pages 242-251, 2004.

tentative execution of the CPN: if no execution is possiblel] X.Fu, T. Bultan, and J. Su. Analysis of Interacting BPEleMServices.

then a violation is detected. gnzifgg(l)ntg[)noailonal Conference on World Wide Web (WWW'f4yes
Our approach has been implemented and monitors hayg c. Girault and R. Valk.Petri Nets for Systems Engineering: A Guide to

been generated from typical BPEL examples. The size of the Modeling, Verification, and ApplicationsSpringer Verlag, 2003.

: : S. Haddad. A reduction theory for coloured net&dvances in Petri
produced monitor is reasonable and can be embedded on sl Nets 424:209-235, 1989,

Servers. [9] S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Mliniglweb
Experimentation showed that both memory footprint and services interoperability. 16th International Conference on Enterprise
execution overhead are reasonable, even when numerous[\{g?'nform""t'On Systems (ICEISpages 287-295, 2004,

) . . e S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL tetrP
sessions are simultaneously handled. This shows the ityabi Nets. In3rd International Conference on Business Process Manageme

of such a solution to monitor heavily used servers. (BPM'05), pages 220-235, 2005.

0 uti | id th d t t | .tg.a] M. B. Juric. A Hands-on Introduction to BPEL, http://wworacle.com/
ur solution also provides another advantage not explol technology/global/en/pub/articles/matjdmpell.html, 2008.

in this paper. The CPN model can serve as a basis for fornual] z. Li, J. Han, and Y. Jin. Pattern-Based Specificatiod ®alidation of
verification purpose as it is the case in similar work [15]_ Web Services Interaction Properties.3th International Conference on

. . . Service-Oriented Computing (ICSOC'0pages 73—-86. Springer, 2005.
Future Work: so far, our technique runs in parallel of the[13] Z. Ui, Y. Jin, and J. Han. A Runtime Monitoring and Valtitm

WS. And thus, actions remain limited to logging or stopping Framework for Web Service Interactions. 2006 Australian Software

the WS execution, when protocol violations are detected.. Engineering Conference (ASWEC'0@pges 7079, 2006.

. P . . 4] LIP6/MoVe. Coloane web page, http://move.lip6.ffta@re/
Further work will thus focus on a closer integration of th COLOANE.
monitor to the WS in order to have a better control of the W[$5] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. yuia
when problems are detected. Interacting WS-BPEL Processes using Flexible Model GdiveraData
P & Knowledge Engineering64(1):38-54, 2008.
[16] K. Mahbub and G. Spanoudakis. Run-Time Monitoring ofjReements
ACKNOWLEDGMENT for Systems Composed of Web-Services: Initial Implemémagand
. . Evaluation Experience. I18rd International Conference on Web Services
The authors would like to thank their research sponsors (icws'05) pages 257-265, 2005.

the National Natural Science Foundation of China (Grafif7] OASIS. Web Services Business Process Execution LajegMersion

: - 2.0 (WS-BPEL 2.0), April 2007.
90818028), the National High Technology Development 8 §8] c C()uyang, = Ver)beeE’”W' van der Aalst, S. Breutel, M, and

Program of China (Grant 2007AA010301), the China Scholar-" A. ter Hofstede. Formal Semantics and Analysis of ControwAh WS-
ship Council and the hosting from Université P. & M. Curie. BPEL. Science of Computer Programming7(2-3):162-198, 2007.
[19] G. Salaun, L. Bordeaux, and M. Schaerf. Describing asdg@ning on
Web Services using Process Algebhaternational Journal of Business
Process Integration and Manageme{2):116-128, 2006.
2000 [20] W. Tan, Y. Fan, and M. Zhou. A Petri Net-Based Method for

e Memsure wihout momitor Compatibility Analysis and Composition of Web Services insBess

O+ Measure with monitor Process Execution Languad&EE Transactions on Automation Science
and Engineering 6(1):94-106, 2009.

[21] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinatdan
E. Verbeek. Conformance Checking of Service BehavioACM
Transactions on Internet Technology (TQI8)3):1-30, 2008.

[22] H. Verbeek and W. van der Aalst. Analyzing BPEL procssssing
Petri nets. In2nd International Workshop on Applications of Petri Nets
to Coordination, Workflow and Business Process Managenpages
59-78, 2005.

[23] J.-B. Voron and F. Kordon. Evinrude: A Tool to Automaitily
Transform Program’s Sources into Petri NetPetri Net Newsletter
75:19-38, 2008.

[24] Y. Yang, Q. Tan, and Y. Xiao. Verifying Web Services Camsjtion
Based on Hierarchical Colored Petri Nets.1bt International Workshop

)]] on Interoperability of Heterogeneous Information SysteiiriS'05),
Figure 11. Impact of parallelism on the monitor overhead pages 47-54, 2005.

V. CONCLUSION

1500 4

1000 A

Average response time (ms)
o
3
8

o
L

T T T T T T
0 20 40 60 80 100 120
Number of parallel sessions

