
A Petri Net based Runtime Monitoring Method
for Web Services specified with BPEL

Jun Zhu
School of Computer Science

National University of Defense Technology
Changsha Hunan 410073, China
Email: mail.zhujun@gmail.com

Fabrice Kordon
LIP6 - CNRS UMR 7606

Université Pierre & Marie Curie
4 place Jussieu, 75252 Paris Cedex 05, France

Email: Fabrice.Kordon@lip6.fr

Abstract—BPEL (Business Process Execution Language) is
one of the dominant ways to specify interactions between Web
services. However, it is difficult to deal with behavioral properties
of web services. Typically, well defined protocols may be violated
by clients, thus leading servers to inconsistent states.

In this paper, we propose to tackle this problem thanks to
an automatically generated runtime monitor from the BPEL
specification. First, we extract a web service protocol fromits
specification. Then we generate a monitor capturing communi-
cations from/to the server and detecting inappropriate useof this
protocol.

I. I NTRODUCTION

Context: BPEL [17] is an industry standard proposed by
OASIS and supported by major service providers such as IBM,
Oracle, Sun, etc. It is one of the dominant service composition
description languages for Web Services (WS). BPEL extends
the WS interaction model to support business transactions.

The main objective of BPEL is to define protocols (i.e.
exchange of messages) between several Web services com-
posed to perform advanced functions. In this composition,
a single BPEL process needs to converse with other WS
(usually calledassociated WS) via ordered interactions based
on SOAP (Simple Object Access Protocol) messages. As a
result, the composition, as a new single WS, establishes a
new interaction (conversation) protocol, which corresponds to
a new autonomous behavior.

Problem: However, it is difficult to deal withbehavioral
propertiesof WS compositions. Typically, well defined proto-
cols to request servers may be violated by clients (or associated
WS), thus leading servers to inconsistent states. There is no
guarantee that clients and associated WS behave as expected
because noconformancebetween WS interactions and their
specification is guaranteed in current systems.

When a WS runs, protocol messages are the only evidence
to check if the interaction protocol corresponds to its specifica-
tion. This conformance concerns both clients and associated
WS. So runtime monitoringon such messages is a way to
perform conformance checks and evaluate whether interactions
comply with the BPEL specification.

Contribution: This paper aims at proposing a solution
to check for protocol conformance at runtime. To do so,
we automatically generate a runtime monitor from the BEPL
specification. The BPEL specification is transformed into a

Colored Petri Net [7] (CPN), a formal description technique
suitable to capture concurrent behavior. We then generate a
runtime monitor capturing communications from/to the WS
and using the CPN description to detect inappropriate use of
the protocol. Our monitoring approach isMessage Oriented.
The execution of the generated monitor is driven by the
captured SOAP messages.

Contents: Section II briefly presents some related work
about formal representations of Web service behaviors and
monitoring techniques. Section III details the way we trans-
form a BPEL description into Petri Nets and build the as-
sociated WS monitor. Finally, Section IV shows, based on
experiments, that our approach can be efficiently operated.

II. RELATED WORK

Related work is divided in two parts: formal representation
of BPEL specifications and monitoring techniques.

A. Formal representations of BPEL specifications

Several approaches have been introduced to capture the
semantics of BPEL by means of formal methods, such as
process algebras, automata or Petri nets. The purpose is to
verify some properties on the WS composition. We do not
aim at providing a full presentation of related work, we only
try to identify some typical approaches in the domain.

Process algebras:Process algebra is used as a formal
basis to analyze BPEL specifications [9], [5], [19]. [9] express
BPLE interaction thanks to Process Algebra. [5] defines a
mapping from BPEL to process algebraic LOTOS to verify
some temporal properties. [19] uses CCS to describe and
validate interactions between Web services.

Automata: Various classes of automata are also used
to model BEPL constructions such as plain automata [6] or
time automata [4]. The result of the mapping can be used to
compute both qualitative and quantitative properties thanks to
model checkers. In [6], some LTL properties are verified with
SPIN. [4] presents how web services can be translated into a
timed automata to be processed with UPPAAL.

Petri Nets: Several studies propose to map BPEL to P/T
nets:

• TheBPEL2PN tool proposes a Petri net-based semantics
for BPEL. It deals with standard behaviors and exception
handling [10].



• The BPEL2PNML tool focuses on the BPEL control
flow constructs. It uses the model to detect unreachable
activities and conflicting messages [18].

• The BPEL2oWFN tool uses a special class of Petri nets
(open workflow net) to model the interactional behavior
of BPEL specification [15]. It checks static analysis
requirements available in BPEL such as cyclic control
links or illegal access to non initialized variables.

Since we aim at the production of a monitor capable of
dealing with several simultaneous sessions, we need colored
tokens to differentiate them. Thus, if some of the proposed
transformation patterns can be reused, they must be adapted.

Other works deal with CPN. In [24], an interesting approach
is presented to verify Web services composition. They rely on
the BPEL specification but do not provide precise mapping
rules to CPN. However, they identify the important BPEL
constructions that capture the behavior of a WS.

Such rules are better defined in [22], [20]. However, they
use a specific class of Petri nets: Workflow nets. But, even if
several rules can be reused, the authors focus on data flow
more than on the control we consider for monitoring (the
behavior we consider is the one of the interaction protocol).

Summary: all the presented approaches are relevant to
represent the behavior of a system. However, we chose CPN
(as in [20]) the three following reasons.

First, CPN are a mathematically founded modeling nota-
tion [7], with a large variety of powerful analysis tools.

Second, a CPN based representation of BPEL behavior is
much more compact than an automata-based one. This is
particularly true because we deal with simultaneous sessions
in WS. The number of sessions must be bounded, since
implementation does not allow an infinite number of parallel
sessions. This is not a major drawback. The Petri net is
used to guide the execution and not to generate the full state
space; so, there are only a limited number of configurations to
store simultaneously (we only deal with a few current states
of the system) instead of a complete automaton (or push-
down automaton) in most current monitoring approaches [23].
Moreover, since CPN allow us to identify sessions, protocol
violations can be unambiguously and precisely identified.

Third, it is known that Petri nets are suitable to express
the semantics of business processes [22]. They also proved a
strong basis for computer-aided modeling and formal verifica-
tion, especially in the control part of distributed systems.

Among the various types of Petri nets, it appears that P/T
Nets-based approaches generate larger specification. More-
over, we produce a more compact specification of the protocols
by using of colored tokens to identify sessions. This also en-
ables a dynamic (but bounded by the color types) management
of sessions.

Most current studies producing Petri nets from BPEL gen-
erate models that are too complex for monitoring because the
proposed patterns contain too many details that are uselessfor
message-oriented monitoring. However, the patterns proposed
in [20] are simpler ; we reuse some in this work (section III-A).

B. Monitoring techniques

The community elaborated numerous monitoring tools for
WS. We divide them in two categories depending on the way
monitor are processed:offline andonline monitoring.

Offline Monitoring: [21] proposes a representative solu-
tion of such approaches. Petri nets are derived from BPEL
specifications. Traces of SOAP messages (from logs) are
used to check conformance of the execution against language
associated to the Petri nets.

Such approaches arepost mortemand thus out of the scope
of our work. We want to trigger actions when problems are
detected at runtime.

Online Monitoring: Contrary to the previous technique,
online monitoring occurs during the execution of web services.

• [3] provides a proxy-based solution to support the exe-
cution of monitoring rules at runtime. It uses a method
to weave monitoring rules dynamically into the process.

• [13] proposes a monitoring framework for WS inter-
actions. It monitors the interactional behaviors of WS
againstpre-defined interaction constraintsthat are used
to detect protocol violations.

• [2] introduces a monitor specification language to express
boolean, statistic and time-related properties of a single
BPEL session. The authors propose a solution to translate
the specification into Java code to implement the WS
monitor; this solution handles one session only.

• [16] proposes a monitoring approach by intercepting
events exchanged between the composed processes. The
approach can check for violations of behavioral properties
and additional monitoring requirements specified in a
kind of event calculus.

From the point of view of acquiring information for moni-
toring, the weaving of monitoring rules ([3]) is very intrusive.
It influences the execution of composed WS and decreases
the performance of the involved servers. On the contrary, the
message catching mechanism used in [16], [12], [13] and [2],
is much better in terms of intrusiveness and performance. As
a result, our approach adopts a similar solution to intercept
SOAP messages as events for monitoring.

From the point of view of monitoring methods, [13] relies
on constraints definition, [2] defines a specification language
for the monitor, [3] uses self-defined monitoring rules and [16]
uses event calculus to describe monitoring requirements. How-
ever, the use of such constraints are dedicated to specific
violations detections of the involved protocols. So, to provide
our monitor with a more accurate view on the protocols to be
monitored, we chose to rely on the BPEL specification that is
transformed into CPN.

Summary:Due to the limitation of post mortem methods,
we do not adopt offline monitoring. We prefer online moni-
toring since it enables the activation of actions, when protocol
violations are detected during the monitored WS execution.

We prefer to use message catching approaches instead of
code instrumentation methods in order to reuse WS sources
“as is”. This code is transformed into a CPN that represents
the protocol reference.



BPEL

Description

Runtime monitoringVerification

Petri Net Model

Transformed from

BPEL Process

BPEL Process

Monitor
BPEL Activity

Transformation Rules

Code

Generation

Figure 1. Overview of the Approach

III. B UILDING A MONITOR FROM A BEPL DESCRIPTION

This section details how we build a monitor from a BPEL
description. This process is divided in two steps presentedin
figure 1: the transformation of a BPEL specification into a
CPN and then the generation of a monitor embedding this
CPN to be used as a description of the reference protocol. Let
us note that the produced CPN can also be used for verification
purpose.

A. BEPL to Petri Net

CPN Model for Composed Service Process:let us first
informally define CPN (more details can be found in [7]).
This definition introduces entities suitable for the description
of WS.
Definition 1 (CPN): A CPNN is a tuple(P, T, F, C), where:

1) P is a finite set of places; T is a finite set of transitions
(P ∩ T = ∅); F is a finite set of arcs (F ⊆ (P × T ) ∪
(T × P )); C is a finite set of colors.

2) P = PI ∪ PM with PI ∩ PM = ∅, wherePI is a set of
internal places andPM is a set ofmessage places,
corresponding to the connection messages in process.
This partition separates places for the control flow of
the protocol (PI ) from the message flow (PM ).

3) C is the color set deduced from the WS sessions (each
value represents one interaction with a client or an
associated Ws). This allows to identify sessions, each
one executing the protocol (described with BPEL).

4) F = FI ∪ FM with FI ∩ FM = ∅, whereFI ⊆ (PI ×

T ) ∪ (T × PI) is a set of arcs andFM = FR
M ∪ FS

M

whereFR
M ⊆ (PM × T ) represents incoming messages

arcs andFS
M ⊆ (T ×PM ) represents outgoing messages

arcs.

We note•p ∈ T (resp.•t ∈ P ) the predecessors of placep
(resp. transitiont) andp• ∈ T (resp.t• ∈ P ) the successors
of placep (resp. transitiont).

Transformation Rules:as mentioned in section II-A, we
reuse some interesting patterns from [20] with some adapta-
tions, such as patternsreceive, reply, sequenceetc. Due to lack
of space, only two typical BPEL activities (one basic activity
– invoke– and one structured activity –switch) are presented.
They show how to map BPEL constructions to a CPN pattern.
Other patterns are defined in a similar way. Each presented rule
has a name, a precondition to be satisfied to operate the rule,
and defines a mapping to CPN. Let us note that each CPN
pattern has two special places: one source placepf (where
pf ∈ PI with •pf = ∅) and one sink placepl (wherepl ∈ PI

with pl• = ∅).

Name Invoke

Precondition Parsing of a<invoke> lexeme with two variables;
inputVariable andoutputVariable.

Mapping
to CPN

<c>

<c>

<c>
MSG_INV_IN

MSG_INV_OUT

T_INV_IN

T_INV_OUT

P_INV_TEM

<c>

<c>

<c>

P_INV_L

P_INV_F

Figure 2. Transformation Rule for the BPEL Basic ActivityInvoke

The rule presented in figure 2 transforms a BPEL ba-
sic activity invoke (request-response) into a CPN. It is
activated when an<invoke> with inputVariable and
outputVariable is parsed. The outgoing request mes-
sage of the corresponding session (c ∈ C) is dropped in
placeMSG_INV_IN by the transitionT_INV_IN. The return
message is consumed by transitionT_INV_OUT fromq place
MSG_INV_OUT. P_INV_F is the source place of the pattern
andP_INV_L is the sink place.

When the invoke is one-way, the produced CPN contains
only the request sending. This is handled by a variation of
this rule dedicated to this particular case.

The rule presented in figure 3 transforms a BPEL structured
activity switch into a CPN. It is activated when a<switch>
with at least onecase alternative (and possibly an optional
elementotherwise) is parsed. Each alternative is mapped
to a dedicated conditional branch. The optionalotherwise
element is mapped to a default branch (if there are no satisfied
conditions, theotherwise branch is chosen thanks to the
associated guard computed from the negation of all other
guards).BLOCK frames stand for the model deduced from
the instructions of the associated alternative.

Concatenation of CPN Patterns:since all transformed
patterns begin and end with places (source place and sink
place), composition can be achieved by place fusion.

Figure 4 explains how two CPN patterns derived from two
successive BPEL instructions are composed. We provide an
example in figure 5 where the rule is activated for aninvoke

Name Switch

Precondition Parsing of a<switch> lexeme with at least onecase.

Mapping
to CPN

<c>

<c>

[COND1]
[~(COND1 &

& CONDn)]

<c>

<c>

BLOCK BLOCK

<c> <c>

<c><c>

<c> <c>

<c> <c>

P_SW_F

P_SW_L

T_SW_CASE1 T_SW_OTHER

Figure 3. Transformation Rule for the BPEL Structured Activity Switch



Name Concatenation of patterns

Precondition Two given CPN patterns issued from two successive BPEL activ-
ities: N1 = (P1, T1, F1, C) andN2 = (P2, T2, F2, C).

Effect
on CPN Concatenated CPNN = (P, T, F, C) = N1 + N2 where:

1) source place ofN2 is merged with sink place ofN1,
2) P = P1 ∪ P2 \ {p1l} wherep1l is the sink place of

N1 (fusioned with the source placeP2f of N2),
3) T = T1 ∪ T2,
4) The composed arc setF = (F1 ∪ F2 ∪ FA)\FD

where FA = (•p1l × {p2f}) represents the created
arcs from predecessors of placep1l to place p2f and
FD = (•p1l × {p1l}) represents the deleted arcs
associated to the deleted placep1l .

Remark: the color setC remains the same all over the CPN
patterns produced from the whole BPEL specification.

Figure 4. Transformation Rule of Pattern Concatenation

followed by aswitch.
Reducing the CPN complexity:our composition mech-

anism may lead to large models when BPEL specifications
are complex. To avoid this, we apply the CPN reduction
rules defined in [8]. They reduce the complexity of the
resulting CPN by suppressing objects without changing its
behavior. Of course, transitions and places correspondingto
monitored events (like message reception or emission) cannot
be suppressed.

B. Architecture of our WS Monitor

The architecture of our WS monitor is depicted in figure 6.
We identify two major components: the message catching
mechanism (A) and the monitoring module (B).

Message Catching Mechanism:the message catching
mechanism captures incoming and outgoing SOAP messages
and passes them to the monitor module that checks if the
message is valid or not against the protocol model expressed
with a CPN.

To capture SOAP messages in real time, we rely on the un-
derlying communication mechanisms. For this experiment, we
chose Apache ODE and AXIS2 [1] because they are two well-
known and widely used open source execution environments
for WS. Their flexibility allowed us to plug our approach for
experimentation purpose.

<c>

<c>

<c>
MSG_INV_IN

MSG_INV_OUT

T_INV_IN

T_INV_OUT

P_INV_TEM

<c>

<c>

<c>

P_INV_L

P_INV_F

<c>

<c>

[COND1]
[~(COND1 &

& CONDn)]

<c>

<c>

BLOCK BLOCK

<c> <c>

<c><c>

<c> <c>

<c> <c>

P_SW_F

P_SW_L

T_SW_CASE1 T_SW_OTHER

INVOKE

SWITCH

<c>

<c>

<c>
MSG_INV_IN

MSG_INV_OUT

T_INV_IN

T_INV_OUT

P_INV_TEM

<c>

<c>

<c>

P_INV_L

P_INV_F

Pattern Concatenation

Pattern

Concatenation

<c>

<c>

[COND1]
[~(COND1 &

& CONDn)]

<c>

<c>

BLOCK BLOCK

<c> <c>

<c><c>

<c> <c>

<c> <c>

P_SW_F

P_SW_L

T_SW_CASE1 T_SW_OTHER

Figure 5. Illustration of CPN concatenation

SOAP Engine (AXIS2 etc.)
SOAP Monitor

(Severlet)

Middleware (CORBA etc.)

Monitor

(Applet)

Process Execution Engine (ODE etc.)

Web Service

(BPEL Process)

Forward

SOAP Messages

WS

Analyzer

Message

Receiver

Report &

Alarm

Inter

face

Inter

face

SOAP Message

Reports, Logs,

Alerts, ...

Process Execution Environment

Monitor (Applet)

A

B

Generate

Figure 6. Entire Architecture of WS Monitor

Monitoring module: the monitoring module includes
three components: the Message Receiver (MR), the WS Ana-
lyzer (WA) and the Reports & Alerts (RA).

The MR encapsulates the message catching mechanism
and ensures independence from its implementation. It buffers
messages and delivers them to the WA in the same order as
they were received.

The WA is generated from the CPN model. It is executed
and synchronized with the caught messages to set up, thread
per thread, the evolution of the WS protocol. If no transition
can be fired in the CPN, the protocol is violated. This event
is then passed to the RA.

The RA is notified when a problem occurs and handles it
accordingly to its configuration. The security manager can set
up actions to be taken such as reporting in a log, executing
some dedicated code, filtering requests from the machine
executing the involved client or just stopping the WS.

The monitoring module gets all caught messages and checks
if they correspond to a correct state in the WS protocol. It
follows the algorithm depicted in figure 7. The initialization
consists in initializing variables such as the current state of WS
sessions (usually handled by one dedicated thread), mapping
of WS sessions to tokens in the CPN, message queue, etc.

Receive a SOAP Message

Promote the

Current State

Check if Comply

with Expectation YesNo

Start

End

Initial

Normal Exectuion

Exception

Activate Report &

Alert Module

Dispatch Message to

Corresponding Analyzer Thread

& Trigger Process Checking

Search

Instance-to-AnalyzerThread

Mapping Table Create a New Analyzer

Thread & Update

Mapping Table

Not Exist

Exist

Figure 7. Algorithm of the monitoring module



<c>

<c>
<c>

<c>

<c>
<c>

<c>

<c>
<c>

<c>

<c> <c>

<c>

<c>

<c>

<c>

<c>

<c>

<c>

<c>

<c> <c>

<c> <c>

<c> <c>

<c>

<c>

<c>

<c>

<c>

<c>

<c>

<c>

P_0_SEQ_F

P_0_0_REC_MSG

P_0_2_INVReqRep_

REQ_MSG

P_0_2_INVReqRep_

RES_MSG

T_0_0_REC

P_0_1_ASSIGN_L

T_0_2_INVReqRep_REQ

P_0_2_INVReqRep_TEM

T_0_2_INVReqRep_RES

P_0_3_ASSIGN_L

T_0_4_FLOW_F

P_0_4_0_SEQ_F P_0_4_1_SEQ_F

P_0_4_0_0_INV

OneWay_MSG

P_0_4_0_1_REC_MSG

P_0_4_0_0_INVOn

eWay_L

P_0_4_0_SEQ_L P_0_4_1_SEQ_L

P_0_4_1_3_REC_MSG

P_0_4_1_2_INVOneWay_L

P_0_4_1_2_INVOneWay

_MSG

T_0_4_1_2_INVOneWay

T_0_4_0_0_INVOneWay

T_0_4_0_1_REC

T_0_4_1_3_REC

T_0_4_FLOW_L

P_0_5_SW_F

T_0_5_SW_O

THERWISE
T_0_5_SW_

CASE

P_0_5_SW_L

P_0_6_INVOneWa

y_MSG

P_0_SEQ_L

T_0_6_INVOneWay

A

B

D

C

E

F

G

Figure 8. CPN model generated from the ETA example

Then SOAP messages coming from the catching mechanism
are treated one by one. Each message is associated with a
session that is mapped to a token. So, when a message is
processed, it is mapped to the associated token. If no transition
is enabled for this token, then the WA module detects a
problem. The algorithm is detailed in the next subsection.

C. Generating the WS analyzer

The WS analyzer module is automatically generated from
the CPN model and thus is a rigorous representation of the
BPEL behavior. The other modules of the WS monitor are
reusable libraries. Code generation is done in three phases:

1) Collect statistic information about model: this informa-
tion (cardinality ofPI , PM , T , etc.) is used to size data
structure and predefine the mapping of messages.

2) Code generation: the WA is generated according to the
control flows defined in the CPN detailed below.

3) Module integration: the MR and RA modules are linked
to the WA. The result can be deployed in the AXIS2
WS execution environment where we chose to plug the
message catching system.

Generated code:each transitiont ∈ T is mapped to
a constant and corresponds tocase in a switch instruc-
tion where the corresponding code is inserted. We proceed
similarly with placesp ∈ PM . The switch is located in
a loop and implements the control flow deduced from the
BPEL specification. This code is executed by a dedicated
thread associated with the associated session.

The current state of a session is stored in a dedicated
variable (the maximum number of sessions must be configured
for the WS). This variable is updated once the code associated
to places and transitions is executed.

A message mapping function is produced fromPM and
allows the WA to interact with the message catching mecha-
nism.

IV. EXPERIMENTATIONS

This section illustrates our approach on several examples.
These examples are treated with our prototype implementation
based on theColoane [14] Eclipse plug-in.Coloane is a free
software generic graphic editor.

A. The Employee Travel Arrangements example

Let us first use the service Employee Travel Arrangements
(ETA) defined in [11]. It is a classical example of WS
composition (see figure 9). It contains three typical structured
activities flow, switch and sequence, and three basic
activitiesreceive, assign andinvoke. It also manages
three associated WS (employeeTravelStatus, AmericanAirlines
andDeltaAirlines). It deals with 8 SOAP messages.

<<invoke>>

Retrieve the employee

travel status

<<invoke>>

Get ticket offer from

American Airlines

<<invoke>>

Get ticket offer from

Delta Airlines

flow

<<assign>>

Select American

Airlines ticket

<<assign>>

Select Delta Airlines

ticket

<<invoke>>

Return the best offer

Employee

Travel Status

Web Service

American

Airlines

Web Service

Delta Airlines

Web Service

ETA

1:Request

6:Invoke

2:Request

3:Reply

4.1:Invoke

4.2:Call-back 5.2:Call-back

5.1:Invoke

switch

<<receive>>

Receive the request

from clientClient

A

B

C
D E

F

G

Figure 9. The BPEL specification of the ETA example

The Generated Petri Net:the resulted CPN is presented
in figure 8. It has 21 places, 12 transitions and 34 arcs and is
produced in less than 2 seconds. Dashed-line frames outline
major portions of this net, to make a connection with the
corresponding BPEL activities. These frames are labeled to
correspond to the elements outlined in figure 9. Gray places
correspond to SOAP messages.

The Generated Code:The generated WS monitor for this
example is 1347 LOC in Java. Among these, the WA is 118
LOC, the MR is 165 and the RA is 206. Code for MR and
RA remains constant.

Comparison to Other Tools:We also run our tool
on two other examples extracted from the community: the
Loan Approval Process (LAP) and the House Loan of
Bank (HLB) [17]. We processed these three examples with
BPEL2oWFN1 [15] and BPEL2PNML [18]. The objective

1Development of BPEL2PN stopped in 2005. BPEL2oWFN, its successor,
supports at least all its features.



Tools Place Transition Arc Code for WA
Example ETA (154 BPEL LOC)

17 Total Activity (11 Basic + 6 Structured) 8 Messages
BPEL2PNML 118 116 313 -
BPEL2oWFN 65 84 249 -

Our tool 21 12 34 118 LOC
Example LAP (98 BPEL LOC)

8 Total Activity (6 Basic + 2 Structured) 4 Messages
BPEL2PNML 57 46 146 -
BPEL2oWFN 74 87 280 -

Our tool 19 8 30 91 LOC
Example HLB (186 BPEL LOC)

30 Total Activity (17 Basic + 13 Structured) 12 Messages
BPEL2PNML 202 195 444 -
BPEL2oWFN 143 188 542 -

Our tool 50 28 84 394 LOC

TABLE I
STATISTICS ON GENERATEDCPNAND MONITOR

Rate of Detected Rate of Detected
“bad” Clients Violations “bad” Clients Violations

5% 100% 30% 100%
10% 100% 40% 100%
20% 100% 50% 100%

TABLE II
EVALUATING PROTOCOL VIOLATION DETECTION RATE

is to compare the size of the generated Petri nets (no code
generation is offered by BPEL2PNML and BPEL2oWFN).
When available, all possible optimizations of these tools were
activated.

Table I compares the produced CPN with ours (light gray
lines). It shows that our patterns compete with other ones and
lead to smaller CPN. This is probably because our patterns
rely on the control flow of the WS protocol.

Let us note that the WA generated for these examples is
also quite small as the last column shows. It allows a small
memory footprint and does not overload the execution of the
web service.

B. Evaluating Monitor Efficiency

We first evaluate if protocol violations are appropriately
detected by our monitor. To do so, we run the WS and its
associated monitor against “good” and “bad” clients. Good
clients just behave correctly while bad clients generate random
violations at various stages of the supported protocol.

This experiment is reported in table II for a rate of “bad”
clients varying from 5% to 50%. We then check if the number
of detected violations corresponds to the number of expected
one. As the table shows, 100% of the violations were detected
and no false negative was observed. These experiments were
evaluated on105 executions of the WS.

C. Performance Evaluation

One key feature of program monitoring is non-intrusiveness:
the monitor must be efficient in terms of memory and exe-
cution. Experimentation were done on two machines with a
CoreTM 2 Duo at 3GHz, 2GB RAM and running Mandriva
Release 2009.0 (Linux kernel 2.6.27.14). The WS execution
environment is Java SE (build 1.6.015-b03), Apache Tomcat

6.0.20 and Apache ODE 1.3.3. We used Apache Jmeter
2.3.4 to measure the WS response time and thepmap Unix
command to evaluate memory footprint.

Memory footprint: it is quite small and never exceeded
6.47MB during benchmarks (this was measured for the moni-
toring of numerous parallel session in the experiment summa-
rized in figure 11). This is due to the small size of the code and
the fact that only a very few markings have to be maintained
by the WA. The number of maintained markings is strongly
related to the maximum number of WS sessions to be handled
by the system and thus. Thus, an appropriate configuration of
the system allows to control the size of required memory.

Execution Overhead for sequential execution:let us
first measure the execution overhead when the WS processes
sessions sequentially. To do so, we compare a set of WS
executions with monitoring to the same execution without
monitoring. To evaluate potential variations on the impact
of monitoring when realization of services require CPU, we
introduce specific code that uses between 8 and 9 ms of CPU
and a variablecode loopthat corresponds to the number of
time this code is executed when a SOAP message is processed.

Figure 10 shows the response time measured by Jmeter. It
shows that, whatever the process time of a SOAP message
is, the overhead does not seem to be impacted. The observed
overhead is about 5.5%. Here, we extracted our measure from
the analysis of105 SOAP messages for each value ofcode
loop.

Execution Overhead for parallel execution:to assess
that our approach also stands for simultaneous executions of
WS, we evaluate the response time when numerous clients
simultaneously contact the WS we used for our sequential
execution measures. In that experiment,code loop= 3. The
number of processed SOAP messages is then2 × 105 and
requests are shared by the clients (i.e. 10 simultaneous clients
make2×104 requests each and 100 simultaneous clients make
2× 103 requests each).

Performances are presented in figure 11. It shows that the
management of parallel sessions has an impact on the WS
performances (this comes from the WS execution environ-
ment). It also shows that the monitor overhead also increases
with the number of simultaneous sessions. This is due to the

Figure 10. Average response time for various execution timeof the WS



management of shared data structures required to map sessions
to colored tokens. The ratio between the two curves however
remains quite acceptable.

V. CONCLUSION

This paper presented a quickly operable solution to auto-
matically produce Web services (WS) monitors from BPEL
specifications. To do so, we extract the protocol defined in
the BPEL specification and encode it by means of Colored
Petri Nets (CPN). These are then used as a compact way
to describe this protocol in order to detect violations from
clients or associated WS. Monitoring relies on the capture
of incoming and outgoing communications. They provoke a
tentative execution of the CPN: if no execution is possible,
then a violation is detected.

Our approach has been implemented and monitors have
been generated from typical BPEL examples. The size of the
produced monitor is reasonable and can be embedded on small
servers.

Experimentation showed that both memory footprint and
execution overhead are reasonable, even when numerous WS
sessions are simultaneously handled. This shows the viability
of such a solution to monitor heavily used servers.

Our solution also provides another advantage not exploited
in this paper. The CPN model can serve as a basis for formal
verification purpose as it is the case in similar work [15].

Future Work: so far, our technique runs in parallel of the
WS. And thus, actions remain limited to logging or stopping
the WS execution, when protocol violations are detected.
Further work will thus focus on a closer integration of the
monitor to the WS in order to have a better control of the WS
when problems are detected.

ACKNOWLEDGMENT

The authors would like to thank their research sponsors
the National Natural Science Foundation of China (Grant
90818028), the National High Technology Development 863
Program of China (Grant 2007AA010301), the China Scholar-
ship Council and the hosting from Université P. & M. Curie.

Figure 11. Impact of parallelism on the monitor overhead

REFERENCES

[1] Apache. Apache Axis2 User’s Guide, http://ws.apache.org/axis2/1 5 1/
userguide.html, 2008.

[2] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-Time
Monitoring of Instances and Classes of Web Service Compositions. In
4th IEEE International Conference on Web Services (ICWS’06), pages
63–71, 2006.

[3] L. Baresi and S. Guinea. Towards Dynamic Monitoring of WS-
BPEL Processes. In3rd International Conference on Service-Oriented
Computing (ICSOC’05), pages 269–282, 2005.

[4] G. Diaz, J. Pardo, M. Cambronero, V. Valero, and F. Cuartero. Automatic
Translation of WS-CDL Choreographies to Timed Automata. In2nd
International Workshop on Web Services and Formal Methods (WS-
FM’05), volume 3670, pages 230–242. Springer, 2005.

[5] A. Ferrara. Web Services: a Process Algebra Approach. In2nd
International Conference on Service Oriented Computing (ICSOC’04),
pages 242–251, 2004.

[6] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services.
In 13th International Conference on World Wide Web (WWW’04), pages
621–630, 2004.

[7] C. Girault and R. Valk.Petri Nets for Systems Engineering: A Guide to
Modeling, Verification, and Applications. Springer Verlag, 2003.

[8] S. Haddad. A reduction theory for coloured nets.Advances in Petri
Nets, 424:209–235, 1989.

[9] S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Modelling web
services interoperability. In6th International Conference on Enterprise
Information Systems (ICEIS), pages 287–295, 2004.

[10] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri
Nets. In3rd International Conference on Business Process Management
(BPM’05), pages 220–235, 2005.

[11] M. B. Juric. A Hands-on Introduction to BPEL, http://www.oracle.com/
technology/global/en/pub/articles/matjazbpel1.html, 2008.

[12] Z. Li, J. Han, and Y. Jin. Pattern-Based Specification and Validation of
Web Services Interaction Properties. In3th International Conference on
Service-Oriented Computing (ICSOC’05), pages 73–86. Springer, 2005.

[13] Z. Li, Y. Jin, and J. Han. A Runtime Monitoring and Validation
Framework for Web Service Interactions. In2006 Australian Software
Engineering Conference (ASWEC’06), pages 70–79, 2006.

[14] LIP6/MoVe. Coloane web page, http://move.lip6.fr/software/
COLOANE.

[15] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing
Interacting WS-BPEL Processes using Flexible Model Generation. Data
& Knowledge Engineering, 64(1):38–54, 2008.

[16] K. Mahbub and G. Spanoudakis. Run-Time Monitoring of Requirements
for Systems Composed of Web-Services: Initial Implementation and
Evaluation Experience. In3rd International Conference on Web Services
(ICWS’05), pages 257–265, 2005.

[17] OASIS. Web Services Business Process Execution Language Version
2.0 (WS-BPEL 2.0), April 2007.

[18] C. Ouyang, E. Verbeek, W. van der Aalst, S. Breutel, M. Dumas, and
A. ter Hofstede. Formal Semantics and Analysis of Control Flow in WS-
BPEL. Science of Computer Programming, 67(2-3):162–198, 2007.

[19] G. Salaun, L. Bordeaux, and M. Schaerf. Describing and Reasoning on
Web Services using Process Algebra.International Journal of Business
Process Integration and Management, 1(2):116–128, 2006.

[20] W. Tan, Y. Fan, and M. Zhou. A Petri Net-Based Method for
Compatibility Analysis and Composition of Web Services in Business
Process Execution Language.IEEE Transactions on Automation Science
and Engineering, 6(1):94–106, 2009.

[21] W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and
E. Verbeek. Conformance Checking of Service Behavior.ACM
Transactions on Internet Technology (TOIT), 8(3):1–30, 2008.

[22] H. Verbeek and W. van der Aalst. Analyzing BPEL processes using
Petri nets. In2nd International Workshop on Applications of Petri Nets
to Coordination, Workflow and Business Process Management, pages
59–78, 2005.

[23] J.-B. Voron and F. Kordon. Evinrude: A Tool to Automatically
Transform Program’s Sources into Petri Nets.Petri Net Newsletter,
75:19–38, 2008.

[24] Y. Yang, Q. Tan, and Y. Xiao. Verifying Web Services Composition
Based on Hierarchical Colored Petri Nets. In1st International Workshop
on Interoperability of Heterogeneous Information Systems(IHIS’05),
pages 47–54, 2005.


