
 Page 1/8

Modeling and Validation of ARINC653 architectures

Julien Delange1, Laurent Pautet1, Fabrice Kordon2

1: TELECOM ParisTech – LTCI UMR 5141, 46 rue Barrault, F-75634 Paris CEDEX 13, France

2: LIP6, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract: Avionics systems must be carefully
designed due to their criticality since fault may lead

to loss of life. These systems must be verified and
certified. However, design of avionics architectures
becomes more and more complex due to an

increasing demand of new functionalities. It makes
very difficult to analyze systems and detect potential
faults that may cause damages.

This paper presents an approach to model and
validate avionics systems. Architecture
requirements, properties and constraints are

described with the Architecture Analysis and Design
Language (AADL) and its associated ARINC653
annex. Then, we apply validation rules to check

system correctness and constraints enforcement.
This approach provides a high-level view of the
system and eases the development of avionics

system by validating their requirements at a model-
level, before any implementation efforts

Keywords: AADL, ARINC653, validation, model-

based, Ocarina, REAL.

1. Introduction

Context Safety-critical systems have strong
requirements to be enforced all over the

development process. To prevent damages from
occurring errors, safety-critical architectures are
based on dedicated services isolating software

components and enforcing safety requirements.
The ARINC653 standard addresses such

issues and introduces the concept of partitioned

architectures for the design of avionics software. The
main purpose is to increase system reliability and
dependability. To do so, ARINC653-compliant

operating systems (OS) isolate software components
in terms of space and time and provide fault
detection/recovery mechanisms. They also provide

configuration tables to associate recovery
procedures with each potential fault that may occur
at runtime.

Problem We identify three problems in the design of
ARINC653 architectures in terms of representation

and analysis.

First, it is difficult to design ARINC653
architectures due to their amount of requirements

and their associated services (communication, fault
management, etc.). Since the ARINC653 standard
does not provide an abstract representation of the

architecture, ARINC653 systems analysis and
review are made by means of code analysis, which
is tedious, error-prone and OS dependent.

Second, critical services of ARINC653
architectures and OS must be analyzed before
implementation efforts. These services (hierarchical

scheduler, fault recovering, etc.) must be
automatically validated to ensure that specified
requirements can be fulfilled.

Third, the partitioning strategy must be
verified to check that failure in a partition cannot
affect another one. This is of particular interest since

ARINC653 architectures can host components
having different criticality levels. Thus, a fault that
occurs in a component at a given criticality can

impact other components at a higher criticality level.
This behavior must be detected and avoided as soon
as possible in the development process.

Proposed Approach To overcome these problems,
we propose to model and validate ARINC653

systems to check for safety requirements. To do so,
we rely on a modeling language providing an
appropriate semantics for safety-critical architectures

with isolation requirements. We need a modeling
language that enables automation of verification
efforts.

Among currently proposed languages, the
Architecture Analysis and Design Language (AADL)
introduces a component-based approach to describe

both hardware and software aspects of the system. It
defines several components that are aggregated by
engineers to model the system according to its

requirements and properties.
This paper proposes an approach to model

and validate ARINC653 systems with AADL. This

new representation of this kind of architecture eases
system analysis and validation.

We describe ARINC653 partitioned

architectures with their time and space isolation
concerns (hierarchical scheduling, partitions
confinement in memory segments, etc.). Modeling

patterns are based on the last version of the AADL
(version 2). It introduces new components relevant
for the modeling of ARINC653 constraints. These

 Page 2/8

patterns are being integrated in the AADL standard

as an annex document (the ARINC653 annex).
We also int roduce validation rules to enforce

ARINC653 requirements in AADL models. These

rules check for isolation correctness (memory,
scheduling, and communications requirements) as
well as potential impact between components having

different criticality levels.
We then show how these modeling patterns

and associated verification rules can help systems

designers to develop safer systems. We also present
the tools that support our modeling patterns and our
verification rules.

Outline Section 2 presents the ARINC653 standard
and the specific services and requirements of

ARINC653 architectures and OS. Section 3
introduces the AADL modeling languages and
describes our modeling patterns to model ARINC653

architectures. Section 4 details ARINC653
requirements validation using AADL models. It first
presents our AADL-dedicated validation language,

REAL, and details its use for ARINC653 systems
validation. Finally, section 5 concludes and gives an
overview of incoming work on this topic.

2. ARINC653

2.1. Overview of the standard
ARINC653 [1] is an industrial standard that

defines a set of services for the design of safety-
critical avionics systems. The main principle consists
in partitioning applications according to their

criticality level. A partition is isolated in space and
time and executes software components as if it was
running on a dedicated processor.

Figure 1 - Overview of an ARINC653 system

Partitions are executed on top of a dedicated

kernel/middleware: the ARINC653 module. The
conceptual model behind ARINC653 is illustrated in
figure 1. In this example, the system contains two

partitions with different criticality levels: the one of
partition 1 being higher than the one of partition 2. A
connection between the two partitions is supervised

by the ARINC653 module to ensure that data sent by
partition 1 is only received by partition 2.

The module handles both partitions time and

space isolation. As a consequence, it manages

address spaces (to store and isolate partitions code

and data) and time slots (to execute partitions).

2.2 Time and space partitioning policies

ARINC653 isolates applications so a failure
in a partition cannot affect other partitions that run on
the same processor. This isolation is achieved

through two partitioning policies:
1. Time partitioning: each partition is executed

during a fixed and pre-defined time slice. The

ARINC653 module schedules partitions using a
cyclic algorithm repeated at a given period,
called the major time frame. Typically, the value

of the major time frame is equal to the sum of
partitions time frames. At each major time frame,
inter-partitions communication buffers are also

flushed (data sent by one partition is available to
its recipients).

2. Space partitioning: each partition owns a

dedicated address space for its execution. In
addition, inter-partitions communications are
supervised by the module. This ensures that

only allowed entities exchange data through a
communication channel.

2.3 Services

The following subsections detail ARINC653 services.

2.3.1. Intra-partition communication services

Intra-partition communication services
propose interfaces to enable communication
between ARINC653 processes, located in the same

partition. They do not use any module/kernel service
and remain internal to the partition.

The standard defines four mechanisms:

1. Buffer stores multiple messages in message
queues. Two queuing policies are proposed
(FIFO, Priority).

2. Blackboard stores one instance of a message
until it is cleared or overwritten by a new
instance.

3. Event is a notification service to indicate the
completion of a job (wait/notify concept).

4. Semaphore service is used to control access to

shared resources (e.g. counting semaphores).

2.3.2 Inter-partition communication services

Inter-partitions communication services propose
functions to exchange data across partitions. They
are supervised by the module, which ensure data

transport. Communication policy (list of connected
partitions) is statically defined by the system
designer so that partitions cannot create covert

channels.
Inter-partitions communications are flushed at

each major time frame: data sent by a partition is

 Page 3/8

only received by its recipients during the next

scheduling period. This behavior ensures
communication determinism and eases buffers
dimensioning.

The standard defines the following inter-partition
communication functionalities:
1. Queuing ports store multiple messages in

queues. This service behaves like the buffer
service.

2. Sampling ports carry successive updated

messages of the same type. They are similar to
the blackboard.

2.3.2 Health Monitoring service
The health-monitor service defines mechanisms to
catch potential errors at run-time. Errors can be

caught at different levels (module/kernel, partition,
process/task), depending on their nature
(scheduling, execution error, etc.) and the

component they are issued from (module, partition or
process).
For each potential error, the system designer

specifies an appropriate recovering policy (for
example, restart or stop the faulty component) in
order to keep the system stable. He can also provide

a dedicated recovery procedure.

2.4. ARINC653 systems constraints

Due to their partitioning policy, ARINC653 systems
have strong requirements that must be validated:

 Time isolation policy must guarantee that:
1. Each partition is scheduled at least one time

during each scheduling period.
2. The value of the major time frame is

consistent with partitions time frames.

 Space partitioning policy must allocate a distinct
memory segment for each partition.

 Health Monitoring (HM) policy must ensure that all
potential faults are bound to a recovery policy.

Designers must ensure that each level of the
layered architecture (module, partition, process)
uses a recovering policy for each potential fault.

 Such a validation is difficult to achieve hrough
code review since it requires a good knowledge of

the ARINC653 operating system internals. In
addition, it is of special interest to analyze
ARINC653 architectures at a specification-level. It

helps certi fication engineers by finding faults that are
difficult to detect, such as the impact between
partitions evaluated at different criticality levels. For

example, a partition at a low criticality level could
impact another evaluated at a higher criticality level
through a communication channel. If a fault is raised

in the first partition, it could stop sending data to the
other. The absence of fresh data in the highest-
critical partition could lead to an application error. As

a consequence, the fault raised in the lowest-critical

partition is propagated to the highest one. For that
reason, impacts of faults between partitions having
different criticality levels must be analyzed.

3. Modelling ARINC653 architectures

3.1. Introduction to architecture modeling with AADL

AADL [2] is a standard published by the

Society of Automotive Engineers (SAE). It defines a

component-centric language to model both software
and hardware components. It focuses on the
definition of block interfaces, and separates the

implementations from these interfaces.
An AADL description is made of

components. The standard defines software

components (data, thread, thread group,

subprogram, process), execution platform

components (memory, bus, processor, device,

virtual processor, virtual bus) and hybrid

component (system).

Components describe elements of the

architecture. Subprograms model application code.

Since it is not an architectural element, it is reduced
to a reference to another external piece of code.

Threads model the active part of an application

(such as POSIX threads). Processes model

address spaces containing threads. Processors

model micro-processors and a minimal operating

system (mainly a scheduler). Virtual

processors model a part of the processor and

could be understood in different ways: part of the
physical processor, virtual machine, etc. Memories

model hard disks, RAMs. Buses model networks,

wires. Virtual buses are not formally a hardware

component, they are bound to connections in order
to describe their requirements. They can be used for
several purposes (modeling protocol stacks, security

layers, etc.). Devices model sensors or actuators.

Systems represent composite components that are

build from hardware components, software
components or a combination of the two. For
example, a system may represent a board with

multiple processors and memory chips.
Components hierarchy of an AADL model is

composed of several components and sub-

components. The topmost component is an AADL
system that contains processes, processors

and other architecture components.
The interface specification of a component is

called a type and provides features (e.g.

communication ports). Components communicate
one with another by connecting their features (the

connections section). Each component describes

their internals: subcomponents, connections
between these sub-components, etc.

 Page 4/8

An implementation of a thread or a

subprogram component can specify call sequences

to other subprograms, thus describing the execution

flows in the architecture. Since there can be different
implementations of a given component type, it is
possible to select the actual components to be put

into the architecture, without having to change the
other components, thus providing a convenient
approach to application configuration.

AADL allows properties to be associated
with AADL model elements. Properties are typed
and represent name/value pairs that represent

components characteristics and constraints.
Examples are the period and execution time of
threads, the implementation language of a

subprogram, etc. The standard includes a pre-

declared set of properties and users can int roduce

additional properties through property definition
declarations. For interested readers, an int roduction
to the AADL can be found in [3].

Other languages can be integrated in AADL
models by means of annex libraries. These
languages can be added on each component to

describe other aspects. Some annex languages
have been designed, such as the behavior annex
[11] or the error model annex [12]. It provides a

convenient way to specify other aspects of the
system (fault propagation, behavior, etc).

AADL provides two major benefits for

building safety-critical systems. First, compared to
other modeling languages, AADL defines low-level
abstractions including hardware descriptions.

Second, the hybrid system components help

refining the architecture as they can be detailed later

on during the design process.

3.2 ARINC653 modeling patterns

This section presents patterns we designed for the
modeling of ARINC653 [1] architectures. It follows

the same organization as section 2.3. This work is
also included in the ARINC653 annex document of
the AADL, proposed for standardization by SAE.

3.2.1 Mapping partitions

An ARINC653 module (see section 2.1) is

represented in AADL by means of a processor

component. It models the underlying ARINC653
module that provides time and space isolation. It

contains partitions runtime as subcomponents and
defines isolation requirements with AADL properties.

Partitions are specified with two AADL components:
1. A virtual processor for the modeling of

runtime concerns (tasks scheduling, partition
resources, etc).

2. A process that describes the content of the

partition (thread, data, etc).

The association between these components is

defined with the Actual_Processor_Binding

AADL property. The virtual processor is

contained in a processor to model its containment

in its related module.

Space isolation (memory segments
allocation) is specified by associating the process

to a memory component with the AADL property

Actual_Memory_Binding. Memory components

describe segment requirements (size, etc).

3.2.2 Mapping ARINC653 processes

AADL threads model ARINC653

processes because they share the same concept: an
instruction flow constrained by some requirements

(period, deadline, execution time and so on –
described with AADL properties). ARINC653
processes are contained in a partition so that AADL

threads are contained in an AADL process.

Inter and intra-partition communications are
mapped in AADL by connecting components ports.

When two connected threads belong to the same

process, the connection models an int ra-partition

service. When they belong to distinct process

components, it represents an inter-partition
communication channel.

3.2.3 Mapping intra-partition communication

An ARINC653 buffer is represented with a
connection of AADL event data ports between

AADL thread components.

Modeling of ARINC653 blackboards is made
with the connection of AADL data ports between

several AADL threads. AADL data ports do not

queue data; and thus, are semantically equivalent to

the concept of ARINC653 blackboards.
ARINC653 events are described using AADL

event ports between several AADL thread

components. AADL event ports queue signals

without any data. Thus, this concept is the same as

the ARINC653 events.
The ARINC653 semaphore mechanism is

represented using a shared AADL data component

between several AADL threads. The concurrency

characteristic of the semaphore is specified using

the Concurrency_Control_Protocol property.

3.3.4 Mapping inter-partition communication

An ARINC653 queuing port is represented

by connecting AADL event data ports between

several AADL process components. AADL event

data ports queue incoming data with respect to a

given queuing policy, which corresponds to the
concept of ARINC653 queuing ports.

The modeling of ARINC653 sampling port
service is achieved with the connection of AADL
data ports between several AADL process

 Page 5/8

components. AADL data ports do not queue data

and thus, are semantically similar to ARINC653
sampling ports.

AADL properties are associated to ports to

specify their characteristics (queuing policy, etc.).

3.5 Health monitoring mapping
The Health Monitoring service detects faults

at different levels (module, partition, process) and

executes a recovering procedure for each one. For
its description with AADL, we int roduce a property to
represent faults (ARINC653::HM_Errors) and

associate it with another property that models
recovering procedures (ARINC653::HM_Actions).

Both properties are associated to a component
(processor, virtual processor or thread)

that models a layer of the ARINC653 architecture
(respectively module, partition or process).

3.6 Example
The modeling of an ARINC653 system with

AADL is illustrated in figure 2. Two partitions

(isolated in a memory segment) are executed on top
of an ARINC653 module. One partition sends data to
the other (an inter-partition channel).

The ARINC653 module is depicted with the
AADL processor (arincmodule) and contains two

virtual processor components (part1_rt and

part2_rt) that represent partitions execution

environment. Partitions content is specified using an

AADL process, each partition having its own

(prs_sender for the first partition, prs_receiver

for the second).
An AADL component (main) models the

organization of the memory with its segments (AADL
memory sub-components). Partition address spaces

(AADL process components) are then associated

with them to specify the space isolation policy.
Each partition (AADL process) contains

one task (an AADL thread component). We

introduce an inter-partition communication channel

between the partitions to model an inter-partition
communication channel.

Partitions are connected using AADL data

ports. According to our modeling patterns, this

communication mechanism is an ARINC653

sampling port.

Figure 2 - ARINC653 example with AADL

4. ARINC653 architectures validation

This section shows how we use a constraint
language to enforce in critical systems: time
isolation, fault coverage and assessment of the all

the fault-recovery strategy.

4.1. Introduction to REAL

REAL [13] (Requirements Enforcement Analysis
Language) is a constraint-based language for AADL.

It aims at checking constraints on architectural
descriptions at the specification step, saving
significant time over verification at execution time.

REAL concept is similar to formal methods
such as B [14] by checking requirements on a set of
elements using a dedicated language. It allows one

to build sets whose elements are AADL entities
(connections, components or subprogram calls).
Verification can then be performed on either a set or

its elements by stating Boolean expressions. The
basic unit of REAL is a theorem. A theorem verifies
an expression over all the elements of a set that is

called the range set.

In order to write complex expressions, one
can use predefined sets, which contain the instances

of the AADL model of a given type, or build
intermediary sets, using relations between elements
of sets (e.g. returns the elements of the set A which

are subcomponents of any elements of the set B).

Finally, subtheorems calls can be used to
build local or global variables, or to check pre-

required constraints on the model. Callee theorems
inherit at run-time from the caller environment (the
local_set), and the user can pass parameters. Thus,

it is possible to design a library of theorems that will
be used by higher-level, user-defined theorems.
Such work has been done for schedulability analysis,

response-time analysis and software-hardware
adequacy.

A basic example of a REAL theorem is

illustrated in listing 1. This theorem checks that all
processor components contained in the model

have at least one virtual processor. On the model in
figure 2, this theorem is verified: the main processor
(arincmodule) contains two virtual processors

(part1_rt and part2_rt).

theorem Processor_Contains_Partitions_Runtime

 foreach cpu in Processor_Set do

 vps := {x in Virtual_Processor_Set |

 Is_Subcomponent_Of (x, cpu)};

 check (Cardinal (vps) > 0);

end Processor_Contains_Partitions_Runtime;

Listing 1 – REAL theorem example

 Page 6/8

Next sections present theorems to verify

ARINC653 constraints (c.f section 2.4) using AADL
models.

4.2. Time isolation

Time isolation is enforced by validating that:

1. Each partition contained in an ARINC653
module is executed at least one time during
each scheduling period.

2. The consistency of the major time frame
according to partitions time frames.

The first theorem (listing 2) checks that each
processor component (ARINC653 module)

references at least one time each contained
virtual processor (ARINC653 partition) in its

allocated time frames (AADL property

ARINC653::Slots_Allocation). Its validation

ensures that each partition is executed at least one

time during each period.

theorem Partitions_Execution

 foreach cpu in Processor_Set do

 vps := {x in Virtual_Processor_Set |

 Is_Subcomponent_Of (x, cpu)};

 check (Is_In

 (vps,Get_Property_Value

 (cpu, “ARINC653::Partitions_Slots”)));

end Processor_Contains_Partitions_Runtime;

Listing 2 – Theorem for partition execution
enforcement

The second theorem (listing 3) checks that the
major time frame of each AADL processor

component (ARINC653 module) is equal to the sum
of partitions time frames (property ARINC653::

Partitions_Slots). This ensures that the

scheduling period is consistent with partitions time
frames (see section 2.2 for a description of the

requirements of the major time frame).

theorem Scheduling_Major_Frame

 foreach cpu in Processor_Set do

 Check

 (Float

 (Property (cpu,

 "ARINC653::Module_Major_Frame"))

 =

 Sum (Property (cpu,

 "ARINC653::Partition_Slots"))));

end Scheduling_major_frame;

Listing 3 – Theorem for ARINC653

major time frame validation

4.3. Space isolation

To ensure space isolation, we have to verify that
each memory segment is associated with a single

partition. Theorem on listing 4 checks that each

AADL memory component (a segment of the main

memory) is associated with a single AADL process

component (which contains partitions resources –

data, tasks, etc.).

theorem Memory_Bound

foreach s in System_Set do

 mainmem :=

 {y in Memory_Set|Is_Subcomponent_Of (y, s)};

 partmem :=

 {x in Memory_Set|Is_Subcomponent_Of

 (x, mainmem)};

 partitions :=

 {x in Process_Set | Is_Bound_To (x,

partmem)};

 check (Cardinal (partitions) = 1);

end Memory_Bound;

Listing 4 – Theorem for the validation

of space isolation

This theorem also checks model

correctness, ensuring that system memory is divided
into several segments. It first retrieves the main
memory component (mainmem) and analyzes its

memory sub-components (in partmem) that

represent memory segments.

By doing so, this theorem ensures that

system designer divides the main memory into

several memory segments dedicated to a partition.

theorem check_error_coverage

 foreach thr in Thread_Set do

 Prs := {x in Process_Set |

 Is_Subcomponent_Of (thr, x)};

 VP := {x in Virtual_Processor_Set |

 Is_Bound_To (Prs, x)};

 CPU := {x in Processor_Set |

 Is_Subcomponent_Of (VP, x)};

 var errors :=

 List ("Module_Config", "Module_Init",

 "Module_Scheduling",

 "Partition_Scheduling",

 "Partition_Config",

 "Partition_Handler", "Partition_Init",

 "Deadline_Miss", "Application_Error",

 "Numeric_Error", "Illegal_Request",

 "Stack_Overflow", "Memory_Violation",

 "Hardware_Fault", "Power_Fail");

 var actual_errors :=

 (property (CPU, "ARINC653::HM_Errors") +

 property (VP, "ARINC653::HM_Errors") +

 property (thr, "ARINC653::HM_Errors"));

 Check (Is_In (errors, actual_errors) and

 Is_In (actual_errors, errors));

end Check_Error_Coverage;

Listing 6 – Theorem for the validation
of the fault coverage policy

 Page 7/8

4.4 Fault coverage

In ARINC653 architectures, errors may be raised at
three different layers of the architecture (module,

partition, process).
To check that all faults are recovered, we

verify that al faults are handled during the execution

of each ARINC653 process (AADL thread

component). To do so, the associated theorem

(listing 6) analyses each thread component

(process level), its associated process and

virtual processor components (partition level)

and the processor that supports the partition

(module level).
For each AADL thread component (that

represents an ARINC653 process), the theorem

computes the list (in the actual_errors variable)

of the errors recovered by the thread itself but also

by its associated virtual processor (ARINC653

partition) and processor (ARINC653 module).

Then, it compares this list to the one of all potential
errors (variable errors) that may be raised in the

architecture.

theorem Check_Omission_Transient

 foreach src in process_set do

 thr := {x in Thread_Set |

 Is_Subcomponent_Of (x, src)};

 spart := {x in Virtual_Processor_Set |

 Is_Bound_To (src, x)};

 dst := {x in Process_Set |

 Is_Connected_To (src, x)};

 dpart := {x in Virtual_Processor_Set |

 Is_Bound_To (dst, x)};

 var allowed_actions :=

 List ("Partition_Restart",

 "Process_Restart",

 "Confirm");

 var src_actions :=

 (Property (spart, "ARINC653::HM_Actions") +

 Property (thr, "ARINC653::HM_Actions"));

 check

 (

 ((cardinal (src) > 0) and

 (cardinal (dst) >= 0) and

 (is_in (allowed_actions, src_actions)) and

 (max

 (property(dpart,"ARINC653::Criticality"))<

 max

 (Property

 (spart,"ARINC653::Criticality"))))

 Or

 (Not (Is_In(allowed_actions, src_actions))));

end Check_Omission_Transient;

Listing 7 – Theorem for the analysis of
partitioning policy trade-off, transient errors

4.5 Assessment of the fault-recovery strategy

Another validation theorem checks that a recovery
procedure in a partition at a low criticality level could
impact another partition at a higher level. When a

fault is raised in a process, the recovery policy

impacts its partition. These entities (processes of the
partition) stop sending or receiving data to/from the
other partitions. This could be an issue if they are

classified at a different criticality level.
 To detect this issue, we distinguish two
types of errors:

 Transient errors are temporary and happen
when the recovering policy of the sender restarts
the process or its partition. In that case, data is

not sent for a temporary period. It impacts
receiver components for period but once the
recovering strategy is finalized, the system

continues to operate as normal.

 Permanent errors happen when the recovery
policy stops the process or its partition. Data is

no longer sent, which can potentially affect
recipients, especially i f they are classified at a
high criticality level. In that case, data will not be

sent unless the task or its partition is restarted.

theorem Check_Omission_Permanent

 foreach src in process_set do

 thr := { in Thread_Set |

 Is_Subcomponent_Of (x, src)};

 spart := {x in Virtual_Processor_Set |

 Is_Bound_To (src, x)};

 dst := {x in Process_Set |

 Is_Connected_To (src, x)};

 dpart := {x in Virtual_Processor_Set |

 Is_Bound_To (dst, x)};

 var allowed_actions :=

 List ("Partition_Stop",

 "Process_Stop_And_Start_Another",

 "Process_Stop");

 var src_actions :=

 (Property (spart, "ARINC653::HM_Actions") +

 Property (thr, "ARINC653::HM_Actions"));

 check

 ((

 (Cardinal (Src_Prs) > 0) and

 (Cardinal (Dst_Prs) >= 0) and

 (Is_In (allowed_actions, src_actions)) and

 (Max

 (Property (dpart,"ARINC653::Criticality")) <

 Max

 (Property (spart,"ARINC653::Criticality"))))

 Or

 (Not (Is_In (allowed_actions, src_actions))));

end Check_Omission_Permanent;

Listing 8 – Theorem for the analysis of
partitioning policy trade-off, permanent errors

Analysis of the partitioning policy is illustrated in
two theorems. The first one (listing 7) detects
transient errors between partitions having different

criticality levels. The second (listing 8) detects
permanent errors.

They analyze each AADL process component

(ARINC653 partitions) and its connected process

(ARINC653 partitions that receive data from the

former partition). Then, it retrieves the list of recovery

 Page 8/8

actions (in src_actions) that are used when a

fault is raised in the source partition (spart).

Then, this theorem checks that:

 The receiver is classified at the lower criticality
level if the fault-recovery policy of the sender
generates transient data omission.

 The fault-recovery policy of the sender may not
lead to transient omission.
Theorem 8 follows the same validation pattern

looks for permanent errors. Compared to theorem 7,
the values of the allowed_actions variable

contain recovery actions that imply a permanent data

omission.

5. Conclusion

This paper presents an approach for the modeling

and validation of ARINC653 architectures.

To do so, we first introduce modeling patterns to

represent ARINC653 systems and their
characteristics using the AADL modeling language.

We then define, thanks to the REAL language, a set
of theorems that check dedicated properties on the
AADL model. This verification rules allow engineers

to check for a set of predefined rules ensuring state-
of-the-art correctness properties.

Altogether, these two contributions set up an
automatable approach to ensure a good design of
safety-critical systems with regards to safety

properties. Such an approach is a particular interest
for avionics systems that rely on partitioned
architectures and have to fulfill strong certification

requirements. It helps AADL models to be processed
by certification tools to system design prior to
implementation by means of code generation.

6. References

[1] Airlines Electronic Engineering Committee:
"Avionics Application Software Standard Interface",
Aeronautical Radio INC. December 2005.

[2] SAE: "Architecture Analysis and Design Language

v2.0 (AS5506)", September 2008.

[3] Peter Feiler, David Gluch and John Hudak: "The
Architecture Analysis and Design Language
(AADL) : An Introduction", Technical Report,
Software Engineering Institute, Feb 2006.

[4] Peter Feiler and Jorgen Hansson: "Flow Latency
Analysis with the Architecture Analysis Design
Language (AADL)", Technical Report, Software
Engineering Institute 2007.

[5] Bechir Zalila, Jérôme Hugues and Laurent Pautet:
"Ocarina User Guide", TELECOM ParisTech,
Technical Report, 2006.

[6] Software Engineering Institute: "Open Source
AADL Tool Environment (OSATE)", 2006.

[7] AADL Committee: "AADL official website",
http://aadl.info.

[8] TELECOM ParisTech: "TELECOM ParisTech
official portal", http://aadl.telecom-paristech.fr.

[9] William Barnes: "ARINC 653 and why it’s important
for an safety-critical RTOS", 2004.

[10] John McDermid: "Software Hazard and Analysis",
Technical Report, Jan 2004.

[11] R. Frana. J-P Bodeveix, M. Filali and J.F Rolland :
"The AADL Behavior Annex – Experiments and
Roadmap", In 12

th
 IEEE conference on Engineering

Complex Computer Systems, 2007.

[12] A. Rugina, P,H, Feiler K, Kanoun and M, Kaaniche:
"Software Dependability Modeling Using an
Industry-Standard Architecture Description
Language", In Proceeding of the 4

th
 European

Congress ERTS, 2008.

[13] Olivier Gilles and Jérôme Hugues: "Validating
requirements at model-level", In Ingénierie Dirigée
par les modèles (IDM'08), June, 2008.

[14] J. R. Abrial : "The B-Book : Assigning Programs to
Meanings", Cambridge University Press, 1996.

