Rapid Prototyping of Distributed Real-Time Embedded
Systems Using the AADL and Ocarina

Jérome HUGUES, Bechir ZALILA} Laurent PAUTET
GET-Télécom Paris — LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France
jerome.hugues@enst.fr, bechir.zalila@enst.fr, laurent.pautet@enst.fr

Fabrice KORDON
Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe

4, place Jussieu, F-75252 Paris CEDEX 05, France
fabrice.kordon@lip6.fr

Abstract

Building Distributed Real-Time Embedded systems re-
quires a stringent methodology, from early requirements
capture to full implementation. However, there is a strong
link between the requirements and the final implementa-
tion (e.g. scheduling, resource dimensioning). Therefore,
a rapid prototyping process based on automation of te-
dious and error-prone tasks (analysis, code generation) is
required to speed up the development cycle. In this ar-
ticle, we show how the AADL (Architecture, Analysis and
Description Language), appeared late 2005, helps solving
these issues thanks to a dedicated tool-suite. We then de-
tail the prototyping process and its current implementation:
Ocarina.

1 Introduction

Building Distributed Real-Time Embedded (DRE) sys-
tems involves many tightly coupled steps, from require-
ments capture (number of tasks, their interactions, non-
functional attributes) to validation (feasibility of schedul-
ing) down to implementation and testing.

However, the distance between requirements and imple-
mentation usually slows down this process: one has to care-
fully respect non-functional attributes when implementing
tasks; any change in the specification has to be carefully
propagated at the implementation level; interactions be-
tween entities have to be mapped onto run-time entities in a
safe manner (deadlock-free, no starvation, no overrun, etc).

*This work has been funded in part by the IST Programme of the Eu-
ropean Commission under project IST-004033 (ASSERT).

Hence, developers and system architects need common
interchange models to dialog and exchange their require-
ments and concerns. The AADL (Architecture Analysis
and Design Language) [9] recently appears as an architec-
ture description language suitable to describe systems, from
high-level concerns down to implementation.

“Evolutionary” prototyping is now becoming a well ac-
cepted development approach. It is based on a central model
that is refined as long as it is not satisfactory. Programs can
be generated from this model and constitute a version of the
product. The last refined model corresponds to the final sys-
tem. Also called "Model Driven Engineering" (MDE) it is
promoted by OMG.

The goal of this paper is to propose a prototyping
methodology based on AADL and dedicated to DRE.
AADL is interesting compared to other modeling formal-
ism as it is backed by several industrial from the space and
avionics domain. Tools already exist to build and exploit
AADL models, from early validation to full implementa-
tion.

In the following, we give a brief overview of the AADL,
we then discuss how the AADL can serve as a vehicle for a
rapid prototyping methodology for DRE systems. Finally,
we present our current work on the Ocarina AADL tool
suite and assess its use to build High-Integrity DRE.

2 An overview of the AADL

AADL (Architecture Analysis and Design Language) [9]
aims at describing DRE systems by assembling blocks sep-
arately developed.

The AADL allows for the description of both software
and hardware parts of a system. It focuses on the defini-

tion of clear block interfaces, and separates the implemen-
tations from these interfaces. It can be expressed using both
a graphical or a textual syntax.

An AADL model can incorporate non-architectural ele-
ments: embedded or real-time characteristics of the com-
ponents (execution time, memory footprint. ..), behavioral
descriptions, etc. Hence it is possible to use AADL as a
backbone to describe all the aspects of a system.

An AADL description is made of components. The
AADL standard defines software components (data,
threads, thread groups, subprograms, processes) and execu-
tion platform components (memory, buses, processors, de-
vices) and hybrid components (systems).

Components describe well identified elements of the ac-
tual architecture. Subprograms model procedures like in C
or Ada. Threads model the active part of an application
(such as POSIX threads). Processes are memory spaces that
contain the threads. Thread groups are used to create a hi-
erarchy among threads.

Processors model micro-processors and a minimal op-
erating system (mainly a scheduler). Memories model hard
disks, RAMs, etc. Buses model all kinds of networks, wires,
etc. Devices model sensors, etc. Unlike other components.

Systems do not represent anything concrete; they actually
create building blocks to help structure the description.

Component declarations have to be instantiated into sub-
components of other components in order to model an archi-
tecture. At the top-level, a system contains all the compo-
nent instances. Most components can have subcomponents,
so that an AADL description is hierarchical. A complete
AADL description must provide a top-level system that will
contain the other components, thus providing the root of the
architecture tree. The architecture in itself is the instantia-
tion of this system.

The interface of a component is called component type.
It provides features (e.g. communication ports). Compo-
nents communicate one with another by connecting their
features. To a given component type correspond zero or
several implementations. Each of them describe the inter-
nals of the components: subcomponents, connections be-
tween those subcomponents, etc. An implementation of a
thread or a subprogram can specify call sequences to other
subprograms, thus describing the execution flows in the ar-
chitecture. Since there can be different implementations of
a given component type, it is possible to select the actual
components to put into the architecture, without having to
change the other components, thus providing a convenient
approach to configure applications.

The AADL defines the notion of properties that can be
attached to most elements (components, connections, fea-
tures, etc.). Properties are attributes that specify constraints
or characteristics that apply to the elements of the architec-
ture: clock frequency of a processor, execution time of a

thread, bandwidth of a bus, etc. Some standard properties
are defined; but it is possible to define one’s own properties.

@deﬁystem ﬁ

Case_Study_Process

-
T

Figure 1. A simple AADL model

Figure 1 presents a simple AADL model that depicts two
threads: one periodic (GNC, “guidance navigation control”;
one sporadic (TMTC, “telemetry/telecommand”) that inter-
act to read and update a shared variable (POS, “position”).
Such system models for instance a satellite guidance system
controlled by a ground station.

Let us note the model depicted in figure is only the high-
level view of the system, additional elements can be added
to detail the signature of methods that apply on POS, the
deployment of each element onto a physical architecture,
worst case execution time (WCET) of each element, etc.

Projects such as OSATE [11] define modeling environ-
ments to build AADL models, using the Eclipse platform.

We have developed the Ocarina tool-suite [16] to process
AADL models and allow the developer to develop, configu-
re and deploy distributed systems. Ocarina offers schedu-
ling analysis capabilities, connection with formal verifica-
tion tools, and more notably code generation to Ada 2005.

3 A Rapid Prototyping Process for DRE

A DRE is unique in that it should support two very op-
posite constraints: it should be compatible with needs for
critical systems (life-, mission-, business-) and their norma-
tive process; but also embrace new standards or technolo-
gies [7]; for instance for distributed or embedded systems
where new standards or products arise frequently. There-
fore, a prototyping process is required to test as soon as
possible the impact of deployment decisions, or the use of
one software/hardware component in the system. Tools can
support this process by providing quick feedback and exe-
cutable tests to the developer.

3.1 Building prototypes

Two approaches in prototyping are usually distin-
guished [6]:

e “throw-away”: prototypes are built to validate a con-
cept, prior to implementing the real system. The
throw-away approach is used to refine requirements.

e “evolutionary”: prototypes tend to become the final
product. Prototypes are refined to create more accu-
rate ones. The last prototype actually corresponds to
the final system (figure 2). Then, feed-back on the sys-
tem may be provided at various levels and the model is
the main reference for describing the system.

Model (prototype)

Automated feed-back

V Generation
Generated system

Figure 2. Evolutionary prototyping

feed-back

Given testing and validation costs, we believe a “evolu-
tionary” approach should be applied to DRE, where proto-
types are discarded after some tests, if they are not viable.
It is a way to preserve knowledge on the software and hard-
ware that is precious and costly to rebuild. Therefore, one
should leverage previous knowledge to build new systems,
or refine existing ones.

3.2 Requirements for prototyping

A Distributed Real-Time and Embedded system can be
seen as a collection of many requirements covering many
domains. System designers and developers need to describe
both functional and non-functional requirements. These re-
quirements must then be sorted and enforced at the deploy-
ment level (e.g. specific dispatching protocols, transport
mechanisms), or flagged as wrong by tools (potential dead-
locks, resource overrun).

Therefore, we list the following requirements for a pro-
totyping process dedicated to DRE systems:

[R1] support design-by-refinement: allowing one to test for
different scenarios from a common model; or to pre-
cise some elements later (promoting late binding deci-
sions);

[R2] be extensible to support new policies (e.g. dispatching,
QoS, security, etc) via user-defined attributes;

[R3] support for domain-specific analysis (e.g. model
checking, schedulability analysis, safety analysis).

[R’1] support DRE domain entities: software (threads,
shared data) and hardware (processors, buses, sen-
Sors);

[R’2] handle deployment of the system at both hardware and
software levels in a consistent manner;

We note the first requirements are general ones, while the
latter are specific to DRE. In this paper, we focus on DRE
and address them as a whole.

These requirements call for modeling formalisms as me-
dia to support refinement, setting of attributes and analysis.
Such modeling formalisms must support the complete cycle
depicted in figure 2.

Hence, built models should be exchangeable between
tools, and eventually lead to code generation to ease
the construction of prototypes. Such prototyping process
should therefore be compatible with a MDA-like develop-
ment cycle [8]. To reduce model discrepancy, a general
modeling formalism should be used and conserved during
the different steps of the process.

Without loss of generality, we chose the AADL as a core
modeling language to support the different steps of system
construction, from early prototypes to final implementation.
Supported entities and extensible property sets allow one to
build full models and adapt them to the application con-
text. Furthermore, analysis tool can process the models to
assess its viability, point out potential problems, and com-
plete the specification when possible (full resource dimen-
sioning, execution metrics).

3.3 Related Work

Generating High-Integrity code from a model is not lim-
ited to AADL models. In [1], the authors state that gener-
ating code minimizes the risk of several semantic breaches
when translating the model towards code. The manual co-
ding exposes the developer to these breaches. They propose
some guidelines to generate Ravenscar compliant Ada 95
code from HRT-UML. However, the excess of using generic
instantiations introduces a considerable overhead in the exe-
cutable code size (30%).

More closely to this paper’s scope, the Annex D of the
AADL language [10] describes some coding guidelines to
translate the AADL software components into source code
(Ada 95 and C). These rules are not complete mapping spec-
ifications, but they provide guidelines for those who want
to generate code from AADL models. In our case, we took
from these guidelines the rules that are compliant with the
Ravenscar profile.

More concretely, STOOD is a tool developed by Ellidiss
Software [13]. It allows users to model their real-time ap-
plications using the AADL or the notations proposed by the
HOOD method. STOOD allows the code generation from
AADL to Ada 95 by converting AADL models to HOOD
models and then applying the HOOD to Ada 95 mapping
rules. However, the generated code does not rely on a mid-
dleware layer and works only for local applications.

In the following, we illustrate how the AADL imple-
ments this process; and allows rapid prototyping of com-
plete ready-to-run systems.

4 Rapid Prototyping Using the AADL

In this section, we detail the use of AADL in a proto-
typing process, detailing our model processing chain, built
around Ocarina and companion tools. Then, we assess it.

4.1 Capturing requirements in AADL

AADL has been designed to build DRE systems. It is
therefore no surprise it is well suited to capture their re-
quirements in an easy way. The process implements the
following (possibly iterative) path to define and refine:

e data types and related functions to operate on them

e supporting runtime entities (threads) and interactions
between them (through connection and ports)

e association of functions to threads

e mapping of threads onto processes and processors
to form the deployed system.

For each AADL entity, properties can be attached to
refine its non-functional attributes (e.g. its WCET, its prior-
ity or its transport mechanisms).

Furthermore, AADL allows one to refine the description
of each entity to detail more precisely its behavior or some
non-functional attributes, allowing one to support design-
by-refinement; or even to support inheritance to provide
multiple implementations of one component (e.g. a periodic
sensor implemented as either a thermal or speed sensor).

We list sample (reduced) AADL models in code snip-
pets 1 and 2. These snippets correspond to an expanded de-
scription of the system represented graphically in figure 1.

4.2 Assessing an AADL model

AADL models support both code generation and model
analysis. Analysis can range from simple semantic analysis

to more sophisticated one such as schedulability analysis,
model checking of the behavior of the nodes, etc.

In this section, we show how such analysis can be con-
ducted using our AADL model processing suite (figure 3).

Semantic analysis is performed using our AADL com-
piler Ocarina. Ocarina checks that the given AADL model
is conforming to the AADL grammar and that some addi-
tional restrictions are respected:

e All event or data ports are connected,
o All threads are either periodic or sporadic,

e All shared data use a concurrent access protocol that
bounds priority inversion (e.g. the Priority Ceiling Pro-
tocol mandated by the Ravenscar profile).

AADL defines one standard execution semantics, this al-
lows us to go further and assess the system is meaningful,
and can run prior to its generation and execution. We allow
both schedulability analysis and model checking techniques
to fully assess node liveness.

Schedulability analysis is performed using Ched-
dar [12]. Cheddar is an Ada 95 framework that provides
tools and library to check whether AADL threads will
meet their deadline at execution time. Cheddar uses the
Ocarina [16] libraries to analyze the AADL models.

From an AADL model, a model of interacting tasks is
computed. Tasks can interact either locally sharing data
through protected objects (or mutexes), or remotely through
a communication bus. The first allows for traditional Rate
Monotonic Analysis, while the second requires advanced
techniques such as Holistic analysis [14]. Cheddar supports
both; this enables one to check whether one’s architecture
can run within expected bounds.

Verifying the behavior of the nodes is performed by
transforming the AADL model into a Petri net and then
by performing formal verification on the resulting Petri net.
The transformation into Petri net is performed using a Petri
net generator module of Ocarina. The formal verification
(absence of deadlocks...) is performed using the CPN-AMI
Petri Net modeling and model checking environment [3].
For each interaction pattern expressed in the AADL
model (interacting tasks, sent messages...), we build the
corresponding Petri Nets and assemble them to build one
full model representing the system. From this model, we
can either explore its state space and look for deadlock (state
from which no progression is possible), look for inconsis-
tent state or test for more complex timed logical formulas
(such as if event £ holds, then output O is always emitted).

(1) Semantic Analysis

R

Case_Study_System

Case_Study_Process

/ GNC_Thread

AADL model

N
(FeFeeeee]

P2

Model Checker

(3) Behavioral analysis

Figure 3. Exploiting AADL models

data POS
features
Update : subprogram Update;
Read : subprogram Read;
properties

Concurrency_Control_Protocol =>
Priority_Ceiling;
end POS;

data implementation POS. Impl
subcomponents

Field : data POS_Internal_Type;
end POS. Impl;

subprogram Update
— Updates the internal value of POS

features
this : requires data access POS.Impl;
properties

source_language => Ada95;
source_name => "Update";
end Update;

Listing 1. AADL data component

These analyses allow one to fully assess system viability
prior to its execution on the target. If required, the model
can be refined to correct the behavior, adjust WCET; the
model can also be updated after running some checks: e.g.
priority or bounds on buffers can be computed by Cheddar.

4.3 Generating executable code

We use code generation facilities in Ocarina to 1) ana-
lyze the AADL model, 2) expand it, compute required re-
sources and 3) generate code conforming to High-Integrity
(HI) restrictions.

First, the model is built by the application designer,
he maps its application entities onto a hardware architec-
ture (1). Then, this architecture is tested for completeness
and soundness, any mismatch in the configuration is re-
ported by the analysis tool (e.g. lack of connection from

thread TMTC_Thread
features

TMTC_POS : requires data access POS.Impl;
end TMTC_Thread;

thread implementation TMTC_Thread. Impl

calls {
Welcome : subprogram TMTC_ldentity;
TMTC_Job : subprogram TMTC_Job;
Update : subprogram POS. Update ;
Bye : subprogram TMTC_ldentity ;

b

connections

Cnx_TMTC_1 : data access TMTC_POS
—> Update. this;
properties
Dispatch_Protocol => Periodic;
Period => 100 ms;
Compute_Execution_time => 0 ms .. 50 ms;
Deadline => 100 ms;

end TMTC_Thread. Impl;

Listing 2. AADL TMTC Thread

an object) (2). Consequently, model processing occurs, and
code is generated from this AADL model, following the
rules we presented in the previous section (3). The code
can then be compiled and run on the target (4).

Code generation relies on well-known patterns for High-
Integrity systems, inherited from previous work on code
generation from Ravenscar [1] and classical design patterns
for distribution such as the Broker [2], constrained to re-
move all dynamic behavior supported by the minimal mid-
dleware for HI systems: PolyORB-HI.

We named this middleware “PolyORB-HI” (PolyORB
High-Integrity)as a follow up to the PolyORB project we
develop [15]. It shares many common architectural notions
while using a different code base. As for PolyORB, this
middleware is built on isolated elements that embody key
steps in request processing, allowing for finer configuration

of each blocks.

PolyORB-HI [4] strictly follows restrictions set by High-
Integrity applications on object orientation, scheduling, use
of memory. It is developed in Ada 2005 [5]. It is compliant
with both the Ravenscar profile and the High Integrity Sys-
tem restrictions (Annexes D and H of the Ada 2005 stan-
dard). Let us note that most restrictions are enforced at
compile time (no dispatching, no floating point, no alloca-
tor, etc). This simply yet efficiently enforces no unwanted
features are used by the middleware, increasing the confi-
dence in the code generated while limiting its complexity.
Code generated by Ocarina also follows the same compila-
tion restrictions.

User code is also tested for consistency with the above
restrictions. To ensure the user code does not impact
scheduling (which might modify scheduling, and thus
threatens asserted properties at the model-level), we en-
sure at compile-time it uses no tasking constructs (tasks and
protected objects) by positioning the corresponding restric-
tions.

These steps allow the developer to go from the AADL
model to executable code and forth, using one common
model annotated with all required functional and non-
functional elements, including its code base. Each tool
works on the same model, allowing one to debug or enhance
it at different steps. In the next section, we discuss metrics
of this process.

5 Metrics

Going back to the case study we presented in figure 1,
we now detail how these analyses and code generation can
be combined to build one ready-to-run system.

5.1 Schedulability & Model
checking

analysis

The case study we retained is simple enough to be ana-
lyzed by these tools. Let us note that intermediate models
(Cheddar or Petri Nets) are of similar complexity than the
initial AADL model, this implies these analyses are not im-
peded by the model transformation we propose, but by the
initial AADL model and the analysis capability of the tools.

Cheddar can handle only limited time range for simula-
tions (approx. 1500 time units, configurable). CPN-AMI
can handle large state spaces but is limited by typical com-
binatorial explosion problems.

5.2 Code generation
A prototype of PolyORB-HI, running on both ERC32

and LEON?2 targets has been built. These processors are
used by the European Space Agency for its next generation

of embedded systems (satellites, vehicles, etc). Thanks to
Ada portability, the same code can also be tested on na-
tive targets, or on other boards, such as PowerPC-based. In
this section, we study the footprint of the code generated on
ERC32 targets.

Table 1 summarizes the code size for our case study, that
combines GNC, TMTC and POS in one node, using local
connection through mailbox. The display both the actual
lines of code (SLOCs) and the size of the binary objects.
All tests were done in local, using the tsim simulator for
LEON, emulating a 50Mhz processor. This functional test
allows the computation of minimal footprint of the system.
Future work will use a SpacelWire interface!.

The total size of the executable, combining real-time ker-
nel, middleware and the application, is 310kB, using the
GNAT for LEON compiler. It fits the requirements from
minimal embedded systems, and is clearly under the typical
memory range for API-based middleware such as nORB or
microORB, which are above 450kB.

Given the development process we retained, most code
is automatically generated for an AADL model. The code
in the middleware handles simple actions : messages, pro-
tocol, transport. Generated code adds tasking constructs
required to execute the application and enable interaction
between entities : transport handler, application activities,
advanced marshallers, naming tables, etc.

The code generation strategy we chose accounts for a
large part of the distribution aspects of the application: it
includes the elaboration of tasks and protected objects, the
allocation of dedicated memory area, stubs and skeletons,
marshallers and naming table. Finally, the run-time ac-
counts for another large part of the size of the application.

Component SLOCs .0 size (bytes)
Application 87 4496
Middleware 474 37267
Generated code 436 133985

Ada Run-Time N/A < 166308

Table 1. Generated code metrics

5.3 Assessment of the process

Hence, we demonstrate how to exploit one AADL model
and user-provided code for some processing functions.
AADL serves both as a documentation of the system and
as a template to validate it and generate its implementation:
it preserves system design.

Therefore, we have an immediate benefit from an engi-
neering point of view: the developer can focus on its system
architecture. The complete tool suite ensures it is correct,

!For completeness and as a proof of validity of the architecture, another
test was built on GNU/Linux: it implements the low layer transport, using
the sockets API without notable change to the build process.

and handles the configuration of all code-level entities. This
suppresses many manual code writing, a tedious and error-
prone process underlined by well-known software failures
in the space domain like the Ariane V maiden flight. It also
tremendously reduce the development cycle and allow one
to go faster to testing.

6 Conclusion

In this paper, we proposed a rapid prototyping pro-
cess for Distributed Real-Time and Embedded systems built
around the AADL. We first motivated the need for such pro-
cess, focusing on two hard constraints: constraints to build
and qualify such systems in a timely manner, difficulty to
master implementation and dimensioning issues.

We selected the Architecture Analysis and Design Lan-
guage (AADL) to implement an efficient rapid prototyping
process for DRE, focusing on its design-by-refinement ap-
proach, and its extensibility through user-defined proper-
ties. We illustrated this approach by presenting our cur-
rent tool chain built around the Ocarina tool suite and the
PolyORB-HI High-Integrity middleware. We assessed the
process on complete examples to evaluate each step.

We showed that an integrated set of tools enables the user
to focus directly on the overall systems, and leverage its ar-
chitecture to directly generate code for High-Integrity sys-
tems without any user intervention. Besides, analysis tools
have been proposed to check model consistency and via-
bility prior to generation. This increases confidence in the
model while being fully automated.

Future work will consider the addition of the SpaceWire
fieldbus, a better integration with the Ocarina tool suite, and
the extension of the configuration of the middleware to a
wider range of platforms and requirements, addressing fault
tolerance, or other schedulers, but also other programming
languages such as C or embedded Java variants.

Acknowledgement The authors thank F. Singhoff from
the Cheddar project and the members of the IST-ASSERT
project for their feedback on earlier version of this work.
This work is partially funded by the IST-ASSERT project.

References

[1] M. Bordin and T. Vardanega. Automated Model-Based Gen-
eration of Ravenscar-Compliant Source Code. In ECRTS
'05: Proceedings of the 17th Euromicro Conference on
Real-Time Systems (ECRTS’05), pages 59—-67, Washington,
DC, USA, 2005. IEEE Computer Society.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System
of Patterns. John Wiley & Sons, New York, 1996.

[3] A.Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet,
X. Renault, and Y. Thierry-Mieg. New features in CPN-
AMI 3 : focusing on the analysis of complex distributed
systems. In 6" International Conference on Application of
Concurrency to System Design (ACSD’06), pages 273-275,
Turku, Finland, June 2006. IEEE Computer Society.

[4] J. Hugues, B. Zalila, and L. Pautet. Middleware and Tool
suite for High Integrity Systems. In Proceedings of RTSS-
WiP’06, Rio de Janeiro, Brazil, Dec 2006. IEEE.

[5] ISO/IEC 8652:2007(E) Ed. 3. Annotated Ada 2005 Lan-
guage Reference Manual. Technical report, 2006.

[6] F. Kordon and Luqgi. An introduction to Rapid System
Prototyping. [EEE Transaction on Software Engineering,
28(9):817-821, September 2002.

[7]1 N. Leveson. Software engineering: Stretching the limits of
complexity. Communications of the ACM, 40(2):129-131,
1997.

[8] OMG. Model Driven Architecture (MDA), Document num-
ber ormsc/2001-07-01. Technical report, OMG, 2001.

[9] SAE. Architecture Analysis & Design Language (AS5506).
available at http://www.sae.org, sep 2004.

[10] SAE. Language Compliance and Application Program In-
terface. SAE, 2005. The AADL Specification Document
Annex D.

[11] SAE. Open Source AADL Tool Environment. Technical
report, SAE, 2006.

[12] E Singhoff, J. Legrand, L. N. Tchamnda, and L. Marcé.
Cheddar : a Flexible Real Time Scheduling Framework.
ACM Ada Letters journal, 24(4):1-8, ACM Press. Also pub-
lished in the proceedings of the ACM SIGADA International
Conference, Atlanta, 15-18 November, 2004, Nov. 2004.

[13] E. Software. STOOD. http://www.ellidiss.com/stood.shtml.

[14] K. Tindell. Holistic schedulability analysis for distributed
hard real-time systems. Technical report, University of York,
1993.

[15] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. Poly-
ORB: a schizophrenic middleware to build versatile reliable
distributed applications. LNCS 3063:106 — 119, June 2004.

[16] T. Vergnaud and B. Zalila. Ocarina: a Compiler for the
AADL. Technical report, Télécom Paris, 2006. available
athttp://ocarina.enst.fr.

