Design, modeling and analysis of ITS using UML and Petri Nets

Fabien Bonnefoi and Lom Messan Hillah and Fabrice Kordon aadeX Renault

Abstract— This paper is about the application of formal resources access, fault tolerance or checking given évents
methods to model and analyze complex systems in the context of gccurrence. For example, a designer may want to check
Intelligent Transport Systems (ITS). It suggests a specification tha gccurrence of a given undesired situation, related to a
methodology based on a set of UML diagrams to generate a ;
complete analyzable formal model. The methodology integrates safety propertyaccording -to SOlne hypothesgs on the system.
the requirements of incremental and modular development Therefore, formal techniques are well suited to evaluate
for complex systems. The analysis made on the formal model implementation choices on complex systems [2], [3].
is carried out through qualitative criteria, verified by model However, the use of formal methods in this approach

checking tools. The proposed guidelines are illustrated by a yaqires formal specifications. In particular, behavicatl
case study which considers cars in traffic situations, exchanging . - . ’
temporat information must be provided.

information about their states to reach consistency among their o) i)
driving decisions. The objective of this paper is to propose a design and

specification methodology that relies on both an industrial
standard such as UML [4] and a formal description language
I. INTRODUCTION such as Petri Nets, enhancing the relationship between the

Transportation networks are still subject to congestiotwo formalisms.
and safety problems. There is a need to improve quality, The paper is structured as follows. Section Il presents
efficiency and safety on transport systems. In that contexhe issues raised by a model driven design and specification
application of formal methods on the design, modeling andpproach. Then, section Il explains our methodology that i
analysis of Intelligent Transport Systems (ITS) can previdapplied in section IV to a simple case study for illustrative
an appropriate framework for those improvements. purposes. Section V concludes and discusses perspectives.

ITS development is aiming at full cooperation between
vehiclgs and infrastructures SO as to take advgntage of the Il. RAISED PROBLEMS
detection and control capabilities of the vehicle ad-hoc }]
network and the centralized infrastructure support. Thiere 1ne complexity of ITS systems is related to the number
a high number of involved entities and various concurrerlf @ctors in the system as well as its intrinsic parallelism
strategies and decisions are implemented at differentsieve@nd dynamics. The objective of our methodology is to lead
Therefore ITS are very complex and often imply safetydesigners to a stage where they can verify qualitative prop-
critical applications. erties on their specifications. Th|s |mpI|§§ thg use of erma

Such safety and complexity require a particular attentioff€thods and thus, needs a precise specification (espemmally
for ITS design that "traditional” development processe§ehavioral aspects) to be transformed into a formal languag
sometimes are not fully adapted for. At the specification angh€ transformation of an UML specification into a formal
design stages, non-formal approaches such as text documédffguage for verification purpose raises some problems.
and nonstandard diagrams are often used. Thus, in such & NiS section presents encountered problems that came
way, analysis and verification of the specifications is near/out from the reflection around the design of the proposed
impossible. We believe that formal methods could be usedPProach.
to master some key consistency and safety requiremengsgrly requirements: Choosing the appropriate modeling
Also, the dynamics of ITS evolution requires a modular an@gtation
flexible design.

In that context, Model Driven Development (MDD) [1]
appears to be a good direction. The main interest of th
approach is the focus on the construction of models
primary artifacts to describe the system. Furthermore,n/vh%
models are expressed using formal description technidues
is possible to verify and prove properties: fairness of stiar

The primary purpose of this approach is to produce a
gcermal analyzable ITS model from its specification. The
combined use of UML and formal methods is not new.
any approaches have been proposed and have shown the
asibility and benefits of using both modeling approaches,
In particular for performance evaluation [5], [6], [7]. We
additionally provide a way to ease this relation between

F. Bonnefoi is with DSO R&D, Cofiroute, 6 - 10 rue Troyon, 92310 UML specification and the formal model, in a modular and
Sevres, Francef abi en. bonnef oi @ofiroute. fr ~ incremental approach.

Do eTmi/lhé e Cf?irgor(‘P ;?SdG),X'Wiﬁle”tah‘gt el gthz et UML offers a semi-formal flexible and extendable notation
tion team in the Department of Network and Distributed Systeans fOr architectural and behavioral descriptions of almost an

LIP6, CNRS UMR 7606, Paris, Francdl om messan. hil I ah,
fabrice. kordon, xavier.renault}@ip6.fr Irefers to causality, contrarily tbmed that refers to time management.

kind of industrial system. Its use has been assessed on largéetri Nets can also alternatively be used to directly specif
European research projects like SAFESPOT [8]. The widéne internal behavior of a system. This formalism is quite
range of diagram types coupled with extensibility featuresimilar to UML State Machines, in addition to be mathemat-
in addition to its maturity highlights UML as the mostically founded. However, they are less familiar to designer

appropriate entry point for our approach [9]. _ Problem 4, analyzing the systemAnalysis of a system
Formal analysis on concurrent and distributed systems S pe carried out using two principal means: simulation and
however best performed with a more formal language tha@,mal methods.

UML, from which such capability is not yet achieved. Petri On one hand, simulation can be highly parameterized and
Nets do offer a formal mathematically founded frameworlfhanks to this flexibility may not often require a lot of CPU

for systems analysis. and memory usage. However, it has the major drawback

Moreover, Petri Nets are extensively tooled to perform ayy pe partial, thus undesired or unexpected behaviors can
tomatic verification on various key aspects of the consilerg, o missed. It can also be run endlessly, without no real

systems such as qualitative or stochastic evaluation,fine ,pseryation of relevant behavior patterns from which fdrma
formance and so forth. In particular, Symmetric Nets, Wh'cgnalysis can be drawn.
help capturesimilar behaviorsin distributed systems, are On the other hand, formal methods which are mathemati-
well-suited to automatic symmetry detection. This valeabl cally founded, reach exhaustivity. There are two main meth-
feature enables t_he reduction of the state explosion proble, o [14]. Theorem provings used by algebraic approaches to
induced by the size of complex systems [10], [11]. prove properties on systems, possibly infinite, described b
Problem 1, modeling diagrams:We need to ensure the means of axioms. This method is difficult to use because
that the specifications will be adapted to perform formait is less tooled, seldom fully automatic and require highly
verification. To formally and unambiguously describe mairskilled and experienced engineers. Consequently, it takes
concerns (physical environment, control, vehicles data),e lot of time to build a proof. In contrastodel checkingvhich
appropriate UML diagrams must be chosen and their usethe exhaustive exploration of a system’s state spacellys f
guided. Without these restrictions UML diagrams can bautomated but faces the combinatorial explosion problem
used in many ways to design similar specifications. and can mainly address finite systems. As a consequence,
Therefore our methodology should provide guidelinest generally requires a lot of CPU and memory usage.
which are suitable for different "ITS case studies”.
The proposed methodology, detailed in section Ill, de-
scribes how to specify a selected set of UML diagrams. In the 1. METHODOLOGY
next section, we raise the need of defining a model template

suitable for the specification of ITS. We propose some extra steps to the classical "V” software

life cycle in order to help designers to specify and formally
Problem 2, structuring the specification:There are analyze ITS case studies. From the specification of minimal
heterogeneous elements to consider in ITS: computerizqegquired subset of UML diagrams a formal model can be
actors such as cars or controllers in a motorway infrastrugeached, on which safety properties can be verified. In
ture have to deal with physical variables such as brakingarticular, this methodology in the specific field of ITS aims
distances, speed and weight. Also, these numerous actgsroposing solutions to the problems presented in setition
are communicating and interacting in parallel. Model Driven Development advocates the use of models
To have a hierarchical and structured specification usingg primary artifacts for systems development. Consegyentl
a relevant subset of UML diagrams, we need to design gfom raised abstractions in the design, refinement and model
appropriate template. Also, it is important to address asClatransformations are performed throughout the development
of problems instead of one single problem. So, the templaggcle [1]. The methodology described in this paper takes
must enable variation of architectures and components Pstace at early design stages. From the perspective of im-

rameters. _ _ _ plementing the proposed framework into a tools suite for
The template presented in section Ill describes the Sygoftware engineers, we are investigating the use of model
tem’s architecture and its environment components. transformation techniques to build the target formal model

Problem 3, specifying behaviorsUML State Machines from annotated UML models which are component, inter-
are a potential candidate to express internal behaviors fce and state machines diagrams. As for any other MDD
components. However, there is no formal tool able to copapproach, it raises issues in models traceability, refiméme
with state diagrams. Under some conditions, it is possible &nd transformation.
transform a state chart into a formal notation like PetridfNet Here are the solutions to the main problems introduced in
for analysis purpose as described in [12]. Activity diagsamsection Il. Extra steps in the software development process
have also been studied and manually translated into Stochase outlined in Fig. 1.
tic Petri Net models[13]. Such approaches are interesting b Solution to problem 1The high-level specifications are
generated Petri Nets for relatively simple components armade using UML component and class diagrams. Compo-
quite large and non-optimized to capture symmetries. Thusent diagrams are used to describe the system’s archigectur
analysis of a complete system faces combinatorial explosioas illustrated in Fig. 3. Interfaces are defined using UML

class diagrams, emphasizing on the types of exchanged dgteently, it is possible to generate and handle very large sta
through offered methods (point 1 in Fig. 1). spaces [17].

Solution to problem 2:We provide a template that Different activities are defined in our methodology (see
can be adapted to different ITS applications. This templateig. 1). They cover the modeling of architectural and behav-
is elaborated from the investigation of case studies of theral aspects, the generation of a formal specification &d i
SAFESPOT and TrafficView projects [15], [16]. analysis.

The modular grc;hitecture are defined, inyolving COMA Modular architecture of the system
ponents and their interconnections through interfaces. Fo™ . i
example, the Vehicle subsystem is composed of several com-This architecture is based on the template. It us®spo-
ponents. This architecture is realized using UML componefient diagramswhich represent the system’s overall descrip-
model. Fig. 2 and 3 give an overview of the design templaté®n- This description involves subsystems’ components an

(point 2 in Fig. 1). their dependencies through interfaces.
Solution to problem 3:The behavioral description of

each component could be specified using candidate notations Env";:"'n';m =

such as Petri Nets, UML state machines or activity diagrams. T 7

This description must be compatible with the interfaces ICommand ISefse ICReceive JIGSend

definition since at the next step the final model is assembled <subsystem>> =2]

based on the architectural and behavioral descriptions. As Vehicle

formal verification is a major objective of this paper, we éav
chosen Symmetric Nets to specify behaviors. This enables Fig. 2. Subsystems in the ITS UML template.
detection of symmetries on similar behaviors, reducing the

combinatorial explosion during the model checking phase A part of the template is illustrated by the component
(point 3 in Fig. 1). diagrams in Fig. 2 and Fig. 3. It comes from the con-

specification of either a given component or the global sy&n an architecture which is made up of the following
tem must be performed. This operation relies on automatf/PSystems and their components. From the experience of
rules except for behavioral aspect that require inputs fro§gveral projects (SAFESPOT, TrafficView), we deduce the

engineers (point 4 in Fig. 1). following configuration:
To express behavior of the system, a language like Petrie Vehiclessubsystem including a strategy component that
Nets proposes several analysis techniques [3]. realizes the safety applications of the ITS system,

The main one is model checking that consists in the Sensors and communication components.
exhaustive exploration of the state space of the systens. Thi « Their Environmentwhich implements the physics mod-
is a way to verify if an undesired configuration occurs in €ls and the communication canal.
the system (e.g., two vehicles cannot collide). It is also a
way the verify causal relationship between two states,(e.g.

(S

2 IC ication.recei ICanal.
.. . 8 B
a decision can be computed only if a message occurs). g} Sensor
. . o
Other techniques allow to compute structural properties ¢ [1sensorgetegostate
without having to elaborate the full state space. For exampl $§ T iy F'-Se""& S
they can be used to verify that mutual exclusion access to & £l U comserent &3]
some resources is enforced g PerceivedState ’——oj——’ Communication
’ E it e
From this point of view, Symmetric Nets are interest- § _ %U IPerceivedState.setPeerState
) . . © IPerceivedState.getEgoNPeerStates
ing because structural information can be computed and % =
. : : . <ccomponertos
used to activate dedicated compression techniques. Conse <& stategy
&

Feasibility Study/ Operations & i H H
5 ; Results) Fig. 3. Components in the vehicle subsystem.
A I

-
y
P

/7

//// ///’/ Mode}|Checking System Validation Not represented in Fig. 2 but included in the complete
Forma PoRer: s,,sem formal model is theGlobal Clock which represents an

abstraction of the elapsing time symbolized by execution

: cycles of the system, in order to assure fairness for all

vehicles execution.
Verification

B. Definition of components interfaces
r? Unit/ Device
__Field Installation] Testin The second activity is the design of the interfaces. At

this step, interfaces are defined inclass diagram with
Fig. 1. New steps in the classical V-software life-cycle input and output data handled by the offered methods. Their

v -

\

-
v A

names are directly related to the ones described in thee Then behavioral descriptions are manually translated or
component diagram. There is no restriction on the level directly expressed in Symmetric Net formalism, and
of detail provided by the class diagram excepted that no transitions of public methods used in interfaces are

behavioral properties should appear on it. fused with the ones described above.
— The complete formal model is automatically assembled
Strategy using Petri Net tools developed internally. Particularle w
C C State: i State, nti i
e ot vah Gommaend) used a very useful scripting language to handle large Petri
7 Nets specifications: PetriScript [19].
Strategy The environment of the formal model of a single com-
o ven Gommand ponent is represented by Petri Net places which handle its
+getCommand(vehCurrentState: in Veh_State, input and Output variables.
command: out Veh_Command)
-processStrategy1())
-processStrategy2() E. Ana|yS|S
1 1
L--N TL-N The analysis is performed at two levels: individually on the
_id‘in:’e"*s"“‘e _id;‘j"*cm“'“"‘"d components and on the complete model. Experiments have
-state: int -command: char shown that individual components desired behavior must as a
+getState(st: out int) +getCmd(cmd: out int minimum be checked before assembling them. This is useful
+setState(st: in int) +setCmd(cmd: in int)

for debugging purposes since components behavior can be
changed to test different strategies.
Requirements of the system are expressed as properties on
Fig. 4 is an example of the class diagram of a strateg{s model. Those properties are expressed as formula. Causa
component. properties are expressed using LTL or CTL queries [20].
C. Definition of components behavior Then, automatic ve_:rification is prqcessed using dedicaf[ed
: model checkers which are automatically handled by special-
Components behavior in UML may either be defined withzed Petri Net based tools [21]. In Fig. 1, dotted arrows rep-
UML activity diagrams, state machines or directly usingesent feedbacks resulting from this model checking phase.

Symmetric Petri Nets. _ In the following sections, an experiment is reported about
For the first incremental development of this methodolsome properties and future work is sketched.

ogy, we mainly focused on the selection and coherence of
the modeling notations of the specification chain. Model

transformation from UML behavioral diagrams to Symmetric IV. EXPERIMENTATION AND RESULTS
nets, which is another study of its own, will occur in a furthe

step. Therefore, the behavioral model of each component isWe are studying d|ﬁ§renF case ;tudps related.to ITS. The
directly specified using Symmetric Nets. proposed case study in this section is used to illustrate the

As an example, componewvehicleMainbehavior is shown application of the modeling methodology. The objective is
in Fig. 6 in sectic;n Y, to assess the effectiveness and the applicability of formal
' ' methods for ITS.

Fig. 4. An example of the Strategy interface and its realirati

D. Assembling of the formal model

Some approaches have been proposed to transform UMy Case study
models into performance models such as Layered QueuingLet us consider groups of cooperative vehicles, which
Networks (LQN) or Stochastic Petri Nets [18], [13], [12].collaborate in a fully decentralized approach. They exgean
The proposed transformations rely on specifyingréiations information about the traffic state. Then, each driver isabl
and mappingsbetween the source and target metamodel® make a decision according to the traffic context (avoiding
and implementing them with transformation rules. Howevetraffic jam or collision spot, reducing speed, changing Jane
these approaches neither do deal with Symmetric Nets netc.).
do they propose a design methodology suitable for ITS. In this case study, the road space is considered as a shared
The methodology proposed in this paper allows for theesource and is divided into cells. Spatial cells are moving
generation the formal model of a single component or for that the same speed as the average speed of vehicles. A single
entire system. Here is the list of applied rules to transformehicle occupies an entire cell, but some cells may not be
our UML diagrams into a Symmetric Net model: occupied and are considered as free cells if they offer a
« Interfaces in the class diagram are exclusively bound teufficient space for a vehicle to move in.
transitions in the behavioral model of each component A vehicle wanting to move into a free cell must notify
(specified by or transformed into a Symmetric Netadjacent vehicles to this cell. These adjacent vehicles are
model), to enable the assembly step. potential candidates to obtain the cell, so they must reach
« Input and output variables of the class diagram are them consensus to enable a vehicle to move into that cell.
bound to input and output variables in valuations of arc¥ehicles also share the communication medium and their
falling into or emerging from the transitions. communication range is limited to a given number of cells.

Cc1 Cc2 C3 C4

: ; A detailed view of vehicles subsystem is presented in

LZ? f‘f‘** _— f;-!f; ———————— E Fig. 3. The following components are involved:

e i e > 5 : « The Sensor which perceives its states from the envi-
ronment.

o The Perceived Statewhich stores that information (as
a database) necessary to compute a command.

« The Strategy which is responsible for issuing a com-
mand to the environment in order to update each vehi-
cle’s state, based on its perceived state and its neighbors
ones.

o TheCommunicatiorcomponent handles messages pass-
ing through the environment’s channel between neigh-

ors.

Fig. 5. System of cooperative vehicles exchanging inforomati

The overview of the system is depicted by Fig. 5. In
this configuration, vehiclé/a is in and moving with cell
L2CL It communicates with vehicle¥b and Vc which
are respectively in celld1C1 and L1C2 It is out of the
communication range with vehickéd which is in cellL2C3
It may want to move into cell2C2 therefore it should obtain
the agreement o¥b and Vc before moving into that cell.

This kind of system may be used to implement and tegt, Assembling the Petri Net model
different traffic control strategies [16].

We make some assumptions on the environment and tBS
behavior of vehicles, in order to specify the system.

If the minimal set of UML specifications is provided, it is
ssible to obtain the Petri Net model of a single component
or the model of the whole system. The complete Petri Net
« Vehicles communicate with each other using WiFi demodel of the system is assembled from the architectural and
vices or any wireless communication technology. Th@ehavioral descriptions of its components.
communication medium can be constrained by the num- The model of Fig. 6 shows the formal model of vehicles
ber of simultaneous open connections. subsystem general scheduling. It handles the common set of
o The communication infrastructure is based on messaggtions vehicles must perform during a cycle. These actions

passing: information to be exchanged is aggregated Hte related to services offered by components in vehicles
messages and sent to other peers. Subsystem

« In a first approach, the information is about “states” o

vehicles. Here, vehicles states are abstract, but may bVehcheMam IniCycle | Vehicle SCheqiorTA_ <3, ecives, 24 commands.
refined in a further study to correctly represent their, <5 endve
elpllcl;eul\lllee:\jml ExtcractNuII <vpc, ve>
Speed, I’a_d|a| aCCeI_erathn, etc. [SC © N <Vehicle_id.all> <VPC, ve> | <vpet+1, scheduled_ic yenicleMain_ProgCounter
« Each vehicle perceives its own state from local senso <S°“e““'e“ o e e .

<schedu|ed i <vpc, scheduled_i <1, Vehicle_id.all>

and GPS devices. That information is stored in a local VehicleMain_InitStep | [scheduled id <>
Vehicle_id VehicleMain_DispatchOrder
database . VehicIeMainJVSAulhorizeReceive
« Each vehicle perceives its neighbors’ states from wirer <vpe. ve,scheduled | [ve = recelve
less communication devices. That information is alsd Ve, ve, scheduled_id>
H VehicleMain_ExeStep VehicleMain_IVSAuthorizeSend
stored in the Iocgl database. _ . _ Vehicle. Schedule <vpe, v, scheduled i [ve = send
o The representation of the environment in a vehicle <vpe, Ve, schectled_o>
stored in the local database, is not as accurate as the <ve, ve, scheduled_id>
real environment: stored information is updated, so at <vpe, ve scheduled &> | scheduled._ [ve = sense
ani instant, local variables and real states are not always <scheduled.| dﬁ venicnin_ EndoytsceManVSAuRorzeSensr
I I VehicleMain_IVSAuthorizeCommand [ve = endve
synchronized (due to the update period). R
. P . VehicIeMain_CycIeEnd)\Vehlcle_ld VehicleMain_IEndCycle
<scheduled_i ‘ehicle_id.all>———>—1
B. Basic specification “—<scheduled_id Vehicle_id.all

From the formulated ground hypotheses, needed COm- fig 6. Petri net model: general scheduling of vehicles sstosy.
ponents must be defined. In the methodology presented
in section Il all components are defined in the proposed
notation which is UML and Petri Nets based. D. Analysis

The physics model in the environment subsystem managesTo generate the model for a single component, the inter-
vehicles’ real states which are perceived by their sensorface, class and behavioral diagrams are sufficient. It is the
It also implements the function which updates these statp®ssible to verify some properties on the isolated componen
based on commands issued by vehicles. Its activity is undby means of the translation of "requirements” into temporal
the supervision of a local scheduler. A global clock idogic languages such as LTL. Consequently we have been
designed in the final formal model. The purpose of thigble to determine for example that the strategy component
clock is to ensure fair execution steps for all vehicles andill not provide a given type of recommendation to the driver
their interactions with the environment. It thus represeamt if the states of peer vehicles have not been received.
abstraction of the elapsing time which is symbolized by a In addition to the verification of the correct types of ex-
cycle. Hence, all vehicles must accomplish a common set ohanged variables, the formal analysis of the system edable
actions in a cycle before moving to the next. us to evaluate and optimize chosen algorithms.

At this stage, we mainly focused on defining the method-3]
ology and tested few algorithms. Some of them satisfie
our minimum requirements about the number of cycles t
reach a consensus. However, further analysis concerneng th
variation of the maximum number of simultaneous openl]
connections and the communication range are necessary to

provide relevant results.

V. CONCLUSION AND FUTURE WORK

(6]

(7]

In this paper, we presented a design and specification
methodology dedicated to the elaboration of solutions t08
ITS distributed control issues. We want to address four mairlc

problems identified in section II:
1) modeling diagrams,

2) structuring the specification, ©]
3) specifying behaviors, and

4) analyzing the system. (10]
To be compatible with current approaches in software

design, the methodology relies on UML and stick to the
"classical” V-software life cycle. We also proposed to staryy;
the modeling from a specification template containing com-

ponents that can be adapted to a given problem. To do so, |
designers should follow guidelines to integrate the eldsen

3

that are relevant for a given ITS case study. The specificatio

template also preserves by construction a fair executioneof
system. Discretization of the physical aspects of the syste

can be integrated to stick to realistic conditions.

[13]

Once the specification template customized for a given
case study, designers must specify the behavior for '[|’Pf4]
components in the system. Standard UML behavioral di-

agrams can be used since links to some formal notatio
are provided. Alternatively, a formal specification canoals

%)

directly be used as shown in our example (see section 1V)16]
Our objective is to guide designers to achieve ITS specifi-

cations at a level suitable for formal analysis and veriftcat

This is also a way to enhance the use of achieved results fram]
one modeling formalism to the other. The next step of our

work consists in working at the verification level. In pautic

lar, the handling of ITS’ dynamics requires optimized model

checking techniques. Some of these techniques were alredtf}
experimented in [22] but without high-level methodology.

We obtained expected results on the verification of qual-
itative properties of the system and its components. It g9
also worth following up with quantitative verification ugin g,
additional specification in UML set of diagrams and other

specific PN tools.

Another point of interest is the full automation of trans-»;

lations from UML models into Symmetric Nets models in[22]
the framework of a development tool. To do so, we plan to
use Eclipse Modeling Framework [23] as a basis for such an

implementation.

REFERENCES
[1] B. Hailpern and P. Tarr, “Model-driven development: Theod, the

bad and the ugly,IBM Systems Journalol. 45, no. 3, p. 451, 2006.

[2] J. Gogen and Lugqi, “Formal methods: Promises and problelaEE
Software vol. 14, no. 1, pp. 75-85, 1997.

[23]

C. Girault and R. ValkPetri Nets for Systems Engineering: A Guide
to Modeling, Verification and Application2003.

OMG, Unified Modeling Language: Superstructure - \ersion
2.0 formal/05-07-04 OMG, March 2006. [Online]. Available:
http://www.uml.org/

C. Snook and M. Butler, “UML-B: Formal Modeling and Design
Aided by UML,” in ACM Transaction on Sofware Engineering and
Methodology vol. 15, no. 1, January 2006, pp. 92-122.

J. Campos and J. Merseguer, “On the integration of UML astfiP
nets in software development.” B¥7th ICATPN - Petri Nets and other
models of concurrengyS. Donatelli and P. Thiagarajan, Eds., vol.
4024. Springer-Verlag Berlin Heidelberg, June 2006, pp-3B9

B. Bordbar, L. Giacomini, and D. Holding, “UML and Petri tsefor
design and analysis of distributed systems,"|HEE Conference on
Control Applications 2000, pp. 610-615.

F. Bonnefoi, F. Bellotti, and T. Scendzielorz, “From useeeds to
application, the SAFESPOT approach based on roads datgsesjal
in 6th European Congress and Exhibition on Intelligent Trarsp
Systems and Servigedalborg, Denmark, June 2007.

J. Trujillo, “A Report on the First International Worksp on best
practices of UML (BP-UML'05),” inSIGMOD Recordvol. 35, no. 3,
September 2006.

Y. Thierry-Mieg, C. Dutheillet, and |. Mounier, “Autontia symmetry
detection in well-formed nets.” i24th International Conference on
Applications and Theory of Petri Nets 2Q08er. LNCS, W. M. P.
van der Aalst and E. Best, Eds., vol. 2679. Springer Verl@§32
pp. 82-101.

G. Chiola, C. Dutheillet, G. Franceschini, and S. Hatjd®n Well-
Formed Coloured Nets and their Symbolic Reachability Gragigh-
Level Petri Nets. Theory and Application, LNCI991.

S. Bernardi, S. Donatelli, and J. Merseguer, “From UMigsence
diagrams and statecharts to analysable petri net modelsVQ@8P
'02: Proceedings of the 3rd international workshop on Safevand
performance New York, NY, USA: ACM Press, 2002, pp. 35-45.
J. P. Lopez-Grao, J. Merseguer, and J. Campos, “From Udlivity
diagrams to Stochastic Petri nets: application to softwaréopmance
engineering,” iNnWOSP ’'04: Proceedings of the 4th international
workshop on Software and performancélew York, NY, USA: ACM
Press, 2004, pp. 25-36.

A. Valmari, “The State Explosion Problem,” lrectures on Petri Nets
I: Basic Models ser. Lecture Notes in Computer Science, no. 1491.
Springer-Verlag, 1998, pp. 429-528.

“Safespot project,” 2007. [Online]. Available: httfwww.safespot-
eu.org/pages/page.php

S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. BoReKang,
and L. Iftode, “TrafficView: A Driver Assistant Device for affic
Monitoring based on Car-to-Car Communication,” [BEE Semian-
nual Vehicular Technology Conferende C. Press, Ed., 2004.

F. Kordon, “Mastering Complexity in Formal Analysis of @plex
Systems: Some Issues and Strategies Applied to Intelligentsport
Systems,” inInternational Symposium on Object-oriented Real-time
distributed Computing (ISORC’07) Santorini, Greece: IEEE Com-
puter Society, May 2007, p. to be published.

A. D’Ambrogio, “A model transformation framework for the t&au
mated building of performance models from UML models, WOSP
'05: Proceedings of the 5th international workshop on Safeavand
performance New York, NY, USA: ACM Press, 2005, pp. 75-86.
A. Hamez and X. RenaulBetriScript Reference ManudllP6, www-
src.lip6.fr/logiciels/mars/CPNAMI/MANUALSERV.

C. Dutheillet, I. Veernier-Mounier, J.-M. &, and D. Poitrenaudtate-
space-based methods and model checkigtri nets and system
engineering (Claude Girault and Rudiger Valk Eds), first &hringer
Verlag, 2003, ch. 14, pp. 201-276.

] LIP6-MoVe, The CPN-AMI Home pagehttp://www.lip6.fr/cpn-ami.

F. Bonnefoi, L. Hillah, F. Kordon, and G. &mont, “An approach to
model variations of a scenario: Application to Intelligentaiisport
Systems,” inWorkshop on Modelling of Objects, Components, and
Agents (MOCA'06) Turku, Finland, June 2006.

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and Grose,
Eclipse Modeling Frameworkser. The Eclipse Series, E. Gamma,
L. Nackman, and J. Wiegand, Eds. Addison-Wesley Professiona
August 2003.

