
Design, modeling and analysis of ITS using UML and Petri Nets

Fabien Bonnefoi and Lom Messan Hillah and Fabrice Kordon and Xavier Renault

Abstract— This paper is about the application of formal
methods to model and analyze complex systems in the context of
Intelligent Transport Systems (ITS). It suggests a specification
methodology based on a set of UML diagrams to generate a
complete analyzable formal model. The methodology integrates
the requirements of incremental and modular development
for complex systems. The analysis made on the formal model
is carried out through qualitative criteria, verified by model
checking tools. The proposed guidelines are illustrated by a
case study which considers cars in traffic situations, exchanging
information about their states to reach consistency among their
driving decisions.

I. INTRODUCTION

Transportation networks are still subject to congestion
and safety problems. There is a need to improve quality,
efficiency and safety on transport systems. In that context,
application of formal methods on the design, modeling and
analysis of Intelligent Transport Systems (ITS) can provide
an appropriate framework for those improvements.

ITS development is aiming at full cooperation between
vehicles and infrastructures so as to take advantage of the
detection and control capabilities of the vehicle ad-hoc
network and the centralized infrastructure support. Thereis
a high number of involved entities and various concurrent
strategies and decisions are implemented at different levels.
Therefore ITS are very complex and often imply safety-
critical applications.

Such safety and complexity require a particular attention
for ITS design that ”traditional” development processes
sometimes are not fully adapted for. At the specification and
design stages, non-formal approaches such as text documents
and nonstandard diagrams are often used. Thus, in such a
way, analysis and verification of the specifications is nearly
impossible. We believe that formal methods could be used
to master some key consistency and safety requirements.
Also, the dynamics of ITS evolution requires a modular and
flexible design.

In that context, Model Driven Development (MDD) [1]
appears to be a good direction. The main interest of that
approach is the focus on the construction of models as
primary artifacts to describe the system. Furthermore, when
models are expressed using formal description techniques,it
is possible to verify and prove properties: fairness of shared

F. Bonnefoi is with DSO R&D, Cofiroute, 6 - 10 rue Troyon, 92310
Sèvres, France.fabien.bonnefoi@cofiroute.fr

L.M. Hillah, F. Kordon and X. Renault are in the Université
Pierre et Marie Curie (Paris6), with the Modeling and Verifica-
tion team in the Department of Network and Distributed Systemsat
LIP6, CNRS UMR 7606, Paris, France.{lom-messan.hillah,
fabrice.kordon, xavier.renault}@lip6.fr

resources access, fault tolerance or checking given events’
occurrence. For example, a designer may want to check
the occurrence of a given undesired situation, related to a
safety property, according to some hypotheses on the system.
Therefore, formal techniques are well suited to evaluate
implementation choices on complex systems [2], [3].

However, the use of formal methods in this approach
requires formal specifications. In particular, behavioraland
temporal1 information must be provided.

The objective of this paper is to propose a design and
specification methodology that relies on both an industrial
standard such as UML [4] and a formal description language
such as Petri Nets, enhancing the relationship between the
two formalisms.

The paper is structured as follows. Section II presents
the issues raised by a model driven design and specification
approach. Then, section III explains our methodology that is
applied in section IV to a simple case study for illustrative
purposes. Section V concludes and discusses perspectives.

II. RAISED PROBLEMS

The complexity of ITS systems is related to the number
of actors in the system as well as its intrinsic parallelism
and dynamics. The objective of our methodology is to lead
designers to a stage where they can verify qualitative prop-
erties on their specifications. This implies the use of formal
methods and thus, needs a precise specification (especiallyon
behavioral aspects) to be transformed into a formal language.
The transformation of an UML specification into a formal
language for verification purpose raises some problems.

This section presents encountered problems that came
out from the reflection around the design of the proposed
approach.

Early requirements: Choosing the appropriate modeling
notation

The primary purpose of this approach is to produce a
formal analyzable ITS model from its specification. The
combined use of UML and formal methods is not new.
Many approaches have been proposed and have shown the
feasibility and benefits of using both modeling approaches,
in particular for performance evaluation [5], [6], [7]. We
additionally provide a way to ease this relation between
UML specification and the formal model, in a modular and
incremental approach.

UML offers a semi-formal flexible and extendable notation
for architectural and behavioral descriptions of almost any

1refers to causality, contrarily totimed that refers to time management.

kind of industrial system. Its use has been assessed on large
European research projects like SAFESPOT [8]. The wide
range of diagram types coupled with extensibility features
in addition to its maturity highlights UML as the most
appropriate entry point for our approach [9].

Formal analysis on concurrent and distributed systems is
however best performed with a more formal language than
UML, from which such capability is not yet achieved. Petri
Nets do offer a formal mathematically founded framework
for systems analysis.

Moreover, Petri Nets are extensively tooled to perform au-
tomatic verification on various key aspects of the considered
systems such as qualitative or stochastic evaluation, timeper-
formance and so forth. In particular, Symmetric Nets, which
help capturesimilar behaviorsin distributed systems, are
well-suited to automatic symmetry detection. This valuable
feature enables the reduction of the state explosion problem
induced by the size of complex systems [10], [11].

Problem 1, modeling diagrams:We need to ensure
that the specifications will be adapted to perform formal
verification. To formally and unambiguously describe main
concerns (physical environment, control, vehicles data, etc.),
appropriate UML diagrams must be chosen and their use
guided. Without these restrictions UML diagrams can be
used in many ways to design similar specifications.

Therefore our methodology should provide guidelines
which are suitable for different ”ITS case studies”.

The proposed methodology, detailed in section III, de-
scribes how to specify a selected set of UML diagrams. In the
next section, we raise the need of defining a model template
suitable for the specification of ITS.

Problem 2, structuring the specification:There are
heterogeneous elements to consider in ITS: computerized
actors such as cars or controllers in a motorway infrastruc-
ture have to deal with physical variables such as braking
distances, speed and weight. Also, these numerous actors
are communicating and interacting in parallel.

To have a hierarchical and structured specification using
a relevant subset of UML diagrams, we need to design an
appropriate template. Also, it is important to address a class
of problems instead of one single problem. So, the template
must enable variation of architectures and components pa-
rameters.

The template presented in section III describes the sys-
tem’s architecture and its environment components.

Problem 3, specifying behaviors:UML State Machines
are a potential candidate to express internal behaviors of
components. However, there is no formal tool able to cope
with state diagrams. Under some conditions, it is possible to
transform a state chart into a formal notation like Petri Nets
for analysis purpose as described in [12]. Activity diagrams
have also been studied and manually translated into Stochas-
tic Petri Net models[13]. Such approaches are interesting but
generated Petri Nets for relatively simple components are
quite large and non-optimized to capture symmetries. Thus,
analysis of a complete system faces combinatorial explosion.

Petri Nets can also alternatively be used to directly specify
the internal behavior of a system. This formalism is quite
similar to UML State Machines, in addition to be mathemat-
ically founded. However, they are less familiar to designers.

Problem 4, analyzing the system:Analysis of a system
can be carried out using two principal means: simulation and
formal methods.

On one hand, simulation can be highly parameterized and
thanks to this flexibility may not often require a lot of CPU
and memory usage. However, it has the major drawback
to be partial, thus undesired or unexpected behaviors can
be missed. It can also be run endlessly, without no real
observation of relevant behavior patterns from which formal
analysis can be drawn.

On the other hand, formal methods which are mathemati-
cally founded, reach exhaustivity. There are two main meth-
ods [14].Theorem provingis used by algebraic approaches to
prove properties on systems, possibly infinite, described by
the means of axioms. This method is difficult to use because
it is less tooled, seldom fully automatic and require highly
skilled and experienced engineers. Consequently, it takesa
lot of time to build a proof. In contrast,model checkingwhich
is the exhaustive exploration of a system’s state space, is fully
automated but faces the combinatorial explosion problem
and can mainly address finite systems. As a consequence,
it generally requires a lot of CPU and memory usage.

III. METHODOLOGY

We propose some extra steps to the classical ”V” software
life cycle in order to help designers to specify and formally
analyze ITS case studies. From the specification of minimal
required subset of UML diagrams a formal model can be
reached, on which safety properties can be verified. In
particular, this methodology in the specific field of ITS aims
at proposing solutions to the problems presented in sectionII.

Model Driven Development advocates the use of models
as primary artifacts for systems development. Consequently,
from raised abstractions in the design, refinement and model
transformations are performed throughout the development
cycle [1]. The methodology described in this paper takes
place at early design stages. From the perspective of im-
plementing the proposed framework into a tools suite for
software engineers, we are investigating the use of model
transformation techniques to build the target formal model
from annotated UML models which are component, inter-
face and state machines diagrams. As for any other MDD
approach, it raises issues in models traceability, refinement
and transformation.

Here are the solutions to the main problems introduced in
section II. Extra steps in the software development process
are outlined in Fig. 1.

Solution to problem 1:The high-level specifications are
made using UML component and class diagrams. Compo-
nent diagrams are used to describe the system’s architecture
as illustrated in Fig. 3. Interfaces are defined using UML

class diagrams, emphasizing on the types of exchanged data
through offered methods (point 1 in Fig. 1).

Solution to problem 2:We provide a template that
can be adapted to different ITS applications. This template
is elaborated from the investigation of case studies of the
SAFESPOT and TrafficView projects [15], [16].

The modular architecture are defined, involving com-
ponents and their interconnections through interfaces. For
example, the Vehicle subsystem is composed of several com-
ponents. This architecture is realized using UML component
model. Fig. 2 and 3 give an overview of the design template
(point 2 in Fig. 1).

Solution to problem 3:The behavioral description of
each component could be specified using candidate notations
such as Petri Nets, UML state machines or activity diagrams.
This description must be compatible with the interfaces
definition since at the next step the final model is assembled
based on the architectural and behavioral descriptions. As
formal verification is a major objective of this paper, we have
chosen Symmetric Nets to specify behaviors. This enables
detection of symmetries on similar behaviors, reducing the
combinatorial explosion during the model checking phase
(point 3 in Fig. 1).

Solution to problem 4:Then the generation of formal
specification of either a given component or the global sys-
tem must be performed. This operation relies on automatic
rules except for behavioral aspect that require inputs from
engineers (point 4 in Fig. 1).

To express behavior of the system, a language like Petri
Nets proposes several analysis techniques [3].

The main one is model checking that consists in the
exhaustive exploration of the state space of the system. This
is a way to verify if an undesired configuration occurs in
the system (e.g., two vehicles cannot collide). It is also a
way the verify causal relationship between two states (e.g.,
a decision can be computed only if a message occurs).

Other techniques allow to compute structural properties
without having to elaborate the full state space. For example,
they can be used to verify that mutual exclusion access to
some resources is enforced.

From this point of view, Symmetric Nets are interest-
ing because structural information can be computed and
used to activate dedicated compression techniques. Conse-

Feasibility Study/

Concept Exploration

Concepts of

Operations

System

Requirements

High-Level Design UML

Spécifying behavior
Development

Field Installation

Unit / Device

Testing

Subsystem

Verification

System

Verification &

Deployment

System Validation

Operations &

Maintenance

Petri Net

Formal property:

LTL, CTL

Results

1

3

4

Model Checking

ITS UML template
2

UML
1

Fig. 1. New steps in the classical V-software life-cycle

quently, it is possible to generate and handle very large state
spaces [17].

Different activities are defined in our methodology (see
Fig. 1). They cover the modeling of architectural and behav-
ioral aspects, the generation of a formal specification and its
analysis.

A. Modular architecture of the system

This architecture is based on the template. It usescompo-
nent diagramswhich represent the system’s overall descrip-
tion. This description involves subsystems’ components and
their dependencies through interfaces.

Vehicle

<<subsystem>>

Environment

<<subsystem>>

ICSendICReceiveISenseICommand

Fig. 2. Subsystems in the ITS UML template.

A part of the template is illustrated by the component
diagrams in Fig. 2 and Fig. 3. It comes from the con-
sideration that most ITS problems could be studied based
on an architecture which is made up of the following
subsystems and their components. From the experience of
several projects (SAFESPOT, TrafficView), we deduce the
following configuration:

• Vehiclessubsystem including a strategy component that
realizes the safety applications of the ITS system,
sensors and communication components.

• Their Environmentwhich implements the physics mod-
els and the communication canal.

Communication

<<component>>

Strategy

<<component>>

PerceivedState

<<component>>

Sensor
<<component>> ICanal.sendMessageICommunication.receiveMessage

ICommunication.sendEgoState

IPerceivedState.setPeerState

IR
e
a
lS
ta
te
.g
e
tS
ta
te

IS
tr
a
te
g
y
.g
e
tC
o
m
m
a
n
d

ISensor.getEgoState

IPerceivedState.getEgoNPeerStates

Fig. 3. Components in the vehicle subsystem.

Not represented in Fig. 2 but included in the complete
formal model is theGlobal Clock which represents an
abstraction of the elapsing time symbolized by execution
cycles of the system, in order to assure fairness for all
vehicles execution.

B. Definition of components interfaces

The second activity is the design of the interfaces. At
this step, interfaces are defined in aclass diagram, with
input and output data handled by the offered methods. Their

names are directly related to the ones described in the
component diagram. There is no restriction on the level
of detail provided by the class diagram excepted that no
behavioral properties should appear on it.

+getCommand(vehCurrentState: in Veh_State,

 command: out Veh_Command)

<<Interface>>

Strategy

-vehState: [1..N] Veh_State

-vehCommand: [1..N] Veh_Command

Strategy

+getCommand(vehCurrentState: in Veh_State,

 command: out Veh_Command)

-processStrategy1()

-processStrategy2()

-id: int

-state: int

Veh_State

+getState(st: out int)

+setState(st: in int)

-id: int

-command: char

Veh_Command

+getCmd(cmd: out int)

+setCmd(cmd: in int)

1..N 1..N

1 1

Fig. 4. An example of the Strategy interface and its realization.

Fig. 4 is an example of the class diagram of a strategy
component.

C. Definition of components behavior

Components behavior in UML may either be defined with
UML activity diagrams, state machines or directly using
Symmetric Petri Nets.

For the first incremental development of this methodol-
ogy, we mainly focused on the selection and coherence of
the modeling notations of the specification chain. Model
transformation from UML behavioral diagrams to Symmetric
nets, which is another study of its own, will occur in a further
step. Therefore, the behavioral model of each component is
directly specified using Symmetric Nets.

As an example, componentVehicleMainbehavior is shown
in Fig. 6 in section IV.

D. Assembling of the formal model

Some approaches have been proposed to transform UML
models into performance models such as Layered Queuing
Networks (LQN) or Stochastic Petri Nets [18], [13], [12].
The proposed transformations rely on specifying therelations
and mappingsbetween the source and target metamodels
and implementing them with transformation rules. However,
these approaches neither do deal with Symmetric Nets nor
do they propose a design methodology suitable for ITS.

The methodology proposed in this paper allows for the
generation the formal model of a single component or for the
entire system. Here is the list of applied rules to transform
our UML diagrams into a Symmetric Net model:

• Interfaces in the class diagram are exclusively bound to
transitions in the behavioral model of each component
(specified by or transformed into a Symmetric Net
model), to enable the assembly step.

• Input and output variables of the class diagram are then
bound to input and output variables in valuations of arcs
falling into or emerging from the transitions.

• Then behavioral descriptions are manually translated or
directly expressed in Symmetric Net formalism, and
transitions of public methods used in interfaces are
fused with the ones described above.

The complete formal model is automatically assembled
using Petri Net tools developed internally. Particularly we
used a very useful scripting language to handle large Petri
Nets specifications: PetriScript [19].

The environment of the formal model of a single com-
ponent is represented by Petri Net places which handle its
input and output variables.

E. Analysis

The analysis is performed at two levels: individually on the
components and on the complete model. Experiments have
shown that individual components desired behavior must as a
minimum be checked before assembling them. This is useful
for debugging purposes since components behavior can be
changed to test different strategies.

Requirements of the system are expressed as properties on
its model. Those properties are expressed as formula. Causal
properties are expressed using LTL or CTL queries [20].
Then, automatic verification is processed using dedicated
model checkers which are automatically handled by special-
ized Petri Net based tools [21]. In Fig. 1, dotted arrows rep-
resent feedbacks resulting from this model checking phase.

In the following sections, an experiment is reported about
some properties and future work is sketched.

IV. EXPERIMENTATION AND RESULTS

We are studying different case studies related to ITS. The
proposed case study in this section is used to illustrate the
application of the modeling methodology. The objective is
to assess the effectiveness and the applicability of formal
methods for ITS.

A. Case study

Let us consider groups of cooperative vehicles, which
collaborate in a fully decentralized approach. They exchange
information about the traffic state. Then, each driver is able
to make a decision according to the traffic context (avoiding
traffic jam or collision spot, reducing speed, changing lane,
etc.).

In this case study, the road space is considered as a shared
resource and is divided into cells. Spatial cells are moving
at the same speed as the average speed of vehicles. A single
vehicle occupies an entire cell, but some cells may not be
occupied and are considered as free cells if they offer a
sufficient space for a vehicle to move in.

A vehicle wanting to move into a free cell must notify
adjacent vehicles to this cell. These adjacent vehicles are
potential candidates to obtain the cell, so they must reach
a consensus to enable a vehicle to move into that cell.
Vehicles also share the communication medium and their
communication range is limited to a given number of cells.

L1

L2 Va

Vb Vc

Vd

Ve

C1 C2 C3 C4

Fig. 5. System of cooperative vehicles exchanging information

The overview of the system is depicted by Fig. 5. In
this configuration, vehicleVa is in and moving with cell
L2C1. It communicates with vehiclesVb and Vc which
are respectively in cellsL1C1 and L1C2. It is out of the
communication range with vehicleVd which is in cellL2C3.
It may want to move into cellL2C2, therefore it should obtain
the agreement ofVb andVc before moving into that cell.

This kind of system may be used to implement and test
different traffic control strategies [16].

We make some assumptions on the environment and the
behavior of vehicles, in order to specify the system.

• Vehicles communicate with each other using WiFi de-
vices or any wireless communication technology. The
communication medium can be constrained by the num-
ber of simultaneous open connections.

• The communication infrastructure is based on message
passing: information to be exchanged is aggregated in
messages and sent to other peers.

• In a first approach, the information is about “states” of
vehicles. Here, vehicles states are abstract, but may be
refined in a further study to correctly represent their
speed, radial acceleration, etc.

• Each vehicle perceives its own state from local sensors
and GPS devices. That information is stored in a local
database.

• Each vehicle perceives its neighbors’ states from wire-
less communication devices. That information is also
stored in the local database.

• The representation of the environment in a vehicle,
stored in the local database, is not as accurate as the
real environment: stored information is updated, so at
ani instant, local variables and real states are not always
synchronized (due to the update period).

B. Basic specification

From the formulated ground hypotheses, needed com-
ponents must be defined. In the methodology presented
in section III all components are defined in the proposed
notation which is UML and Petri Nets based.

The physics model in the environment subsystem manages
vehicles’ real states which are perceived by their sensors.
It also implements the function which updates these states
based on commands issued by vehicles. Its activity is under
the supervision of a local scheduler. A global clock is
designed in the final formal model. The purpose of this
clock is to ensure fair execution steps for all vehicles and
their interactions with the environment. It thus represents an
abstraction of the elapsing time which is symbolized by a
cycle. Hence, all vehicles must accomplish a common set of
actions in a cycle before moving to the next.

A detailed view of vehicles subsystem is presented in
Fig. 3. The following components are involved:

• The Sensor, which perceives its states from the envi-
ronment.

• The Perceived State, which stores that information (as
a database) necessary to compute a command.

• The Strategy, which is responsible for issuing a com-
mand to the environment in order to update each vehi-
cle’s state, based on its perceived state and its neighbors’
ones.

• TheCommunicationcomponent handles messages pass-
ing through the environment’s channel between neigh-
bors.

C. Assembling the Petri Net model

If the minimal set of UML specifications is provided, it is
possible to obtain the Petri Net model of a single component
or the model of the whole system. The complete Petri Net
model of the system is assembled from the architectural and
behavioral descriptions of its components.

The model of Fig. 6 shows the formal model of vehicles
subsystem general scheduling. It handles the common set of
actions vehicles must perform during a cycle. These actions
are related to services offered by components in vehicles
subsystem.

VehicleMain_ExtractNull
[scheduled_id = 0]

VehicleMain_IEndCycleVehicleMain_CycleEnd Vehicle_id

VehicleMain_IInitCycle

VehicleMain_IVSAuthorizeCommand
[ve = command]

VehicleMain_InitStep
Vehicle_id

VehicleMain_Tab
Vehicle_SchedulerTab

<1, sense>, <2, send>,
<3, receive>, <4, command>,
<5, endve>

VehicleMain_DispatchOrder
[scheduled_id <> 0]

VehicleMain_ProgCounter
Vehicle_ProgCounter

<1, Vehicle_id.all>

VehicleMain_IVSAuthorizeSend
[ve = send]

VehicleMain_IVSAuthorizeReceive
[ve = receive]

VehicleMain_IVSAuthorizeSensor
[ve = sense]

VehicleMain_ExeStep
Vehicle_Scheduler

VehicleMain_EndCycle
[ve = endve]

<vpc, ve, scheduled_id>

<scheduled_id>

<scheduled_id>

<Vehicle_id.all>

<scheduled_id><scheduled_id>

<vpc, ve>

<vpc, ve, scheduled_id>

<vpc, ve, scheduled_id>

<scheduled_id> <vpc, scheduled_id>

<vpc++1, scheduled_id><vpc, ve>

<vpc, ve, scheduled_id>

<vpc, ve, scheduled_id>

<vpc, ve, scheduled_id>

<Vehicle_id.all>

<scheduled_id>

<scheduled_id>

Fig. 6. Petri net model: general scheduling of vehicles subsystem.

D. Analysis

To generate the model for a single component, the inter-
face, class and behavioral diagrams are sufficient. It is then
possible to verify some properties on the isolated component
by means of the translation of ”requirements” into temporal
logic languages such as LTL. Consequently we have been
able to determine for example that the strategy component
will not provide a given type of recommendation to the driver
if the states of peer vehicles have not been received.

In addition to the verification of the correct types of ex-
changed variables, the formal analysis of the system enabled
us to evaluate and optimize chosen algorithms.

At this stage, we mainly focused on defining the method-
ology and tested few algorithms. Some of them satisfied
our minimum requirements about the number of cycles to
reach a consensus. However, further analysis concerning the
variation of the maximum number of simultaneous open
connections and the communication range are necessary to
provide relevant results.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a design and specification
methodology dedicated to the elaboration of solutions to
ITS distributed control issues. We want to address four main
problems identified in section II:

1) modeling diagrams,
2) structuring the specification,
3) specifying behaviors, and
4) analyzing the system.
To be compatible with current approaches in software

design, the methodology relies on UML and stick to the
”classical” V-software life cycle. We also proposed to start
the modeling from a specification template containing com-
ponents that can be adapted to a given problem. To do so, ITS
designers should follow guidelines to integrate the elements
that are relevant for a given ITS case study. The specification
template also preserves by construction a fair execution ofthe
system. Discretization of the physical aspects of the system
can be integrated to stick to realistic conditions.

Once the specification template customized for a given
case study, designers must specify the behavior for the
components in the system. Standard UML behavioral di-
agrams can be used since links to some formal notations
are provided. Alternatively, a formal specification can also
directly be used as shown in our example (see section IV).

Our objective is to guide designers to achieve ITS specifi-
cations at a level suitable for formal analysis and verification.
This is also a way to enhance the use of achieved results from
one modeling formalism to the other. The next step of our
work consists in working at the verification level. In particu-
lar, the handling of ITS’ dynamics requires optimized model
checking techniques. Some of these techniques were already
experimented in [22] but without high-level methodology.

We obtained expected results on the verification of qual-
itative properties of the system and its components. It is
also worth following up with quantitative verification using
additional specification in UML set of diagrams and other
specific PN tools.

Another point of interest is the full automation of trans-
lations from UML models into Symmetric Nets models in
the framework of a development tool. To do so, we plan to
use Eclipse Modeling Framework [23] as a basis for such an
implementation.

REFERENCES

[1] B. Hailpern and P. Tarr, “Model-driven development: The good, the
bad and the ugly,”IBM Systems Journal, vol. 45, no. 3, p. 451, 2006.

[2] J. Gogen and Luqi, “Formal methods: Promises and problems,”IEEE
Software, vol. 14, no. 1, pp. 75–85, 1997.

[3] C. Girault and R. Valk,Petri Nets for Systems Engineering: A Guide
to Modeling, Verification and Applications, 2003.

[4] OMG, Unified Modeling Language: Superstructure - Version
2.0 formal/05-07-04, OMG, March 2006. [Online]. Available:
http://www.uml.org/

[5] C. Snook and M. Butler, “UML-B: Formal Modeling and Design
Aided by UML,” in ACM Transaction on Sofware Engineering and
Methodology, vol. 15, no. 1, January 2006, pp. 92–122.

[6] J. Campos and J. Merseguer, “On the integration of UML and Petri
nets in software development.” in27th ICATPN - Petri Nets and other
models of concurrency, S. Donatelli and P. Thiagarajan, Eds., vol.
4024. Springer-Verlag Berlin Heidelberg, June 2006, pp. 19–36.

[7] B. Bordbar, L. Giacomini, and D. Holding, “UML and Petri nets for
design and analysis of distributed systems,” inIEEE Conference on
Control Applications, 2000, pp. 610–615.

[8] F. Bonnefoi, F. Bellotti, and T. Scendzielorz, “From user needs to
application, the SAFESPOT approach based on roads data analysis,”
in 6th European Congress and Exhibition on Intelligent Transport
Systems and Services, Aalborg, Denmark, June 2007.

[9] J. Trujillo, “A Report on the First International Workshop on best
practices of UML (BP-UML’05),” inSIGMOD Record, vol. 35, no. 3,
September 2006.

[10] Y. Thierry-Mieg, C. Dutheillet, and I. Mounier, “Automatic symmetry
detection in well-formed nets.” in24th International Conference on
Applications and Theory of Petri Nets 2003, ser. LNCS, W. M. P.
van der Aalst and E. Best, Eds., vol. 2679. Springer Verlag, 2003,
pp. 82–101.

[11] G. Chiola, C. Dutheillet, G. Franceschini, and S. Haddad, “On Well-
Formed Coloured Nets and their Symbolic Reachability Graph,”High-
Level Petri Nets. Theory and Application, LNCS, 1991.

[12] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML sequence
diagrams and statecharts to analysable petri net models,” inWOSP
’02: Proceedings of the 3rd international workshop on Software and
performance. New York, NY, USA: ACM Press, 2002, pp. 35–45.

[13] J. P. Lopez-Grao, J. Merseguer, and J. Campos, “From UML activity
diagrams to Stochastic Petri nets: application to software performance
engineering,” in WOSP ’04: Proceedings of the 4th international
workshop on Software and performance. New York, NY, USA: ACM
Press, 2004, pp. 25–36.

[14] A. Valmari, “The State Explosion Problem,” inLectures on Petri Nets
I: Basic Models, ser. Lecture Notes in Computer Science, no. 1491.
Springer-Verlag, 1998, pp. 429–528.

[15] “Safespot project,” 2007. [Online]. Available: http://www.safespot-
eu.org/pages/page.php

[16] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea,P. Kang,
and L. Iftode, “TrafficView: A Driver Assistant Device for Traffic
Monitoring based on Car-to-Car Communication,” inIEEE Semian-
nual Vehicular Technology Conference, I. C. Press, Ed., 2004.

[17] F. Kordon, “Mastering Complexity in Formal Analysis of Complex
Systems: Some Issues and Strategies Applied to Intelligent Transport
Systems,” inInternational Symposium on Object-oriented Real-time
distributed Computing (ISORC’07). Santorini, Greece: IEEE Com-
puter Society, May 2007, p. to be published.

[18] A. D’Ambrogio, “A model transformation framework for the auto-
mated building of performance models from UML models,” inWOSP
’05: Proceedings of the 5th international workshop on Software and
performance. New York, NY, USA: ACM Press, 2005, pp. 75–86.

[19] A. Hamez and X. Renault,PetriScript Reference Manual, LIP6, www-
src.lip6.fr/logiciels/mars/CPNAMI/MANUALSERV.

[20] C. Dutheillet, I. Vernier-Mounier, J.-M. Ilíe, and D. Poitrenaud,State-
space-based methods and model checking, Petri nets and system
engineering (Claude Girault and Rudiger Valk Eds), first ed.Springer
Verlag, 2003, ch. 14, pp. 201–276.

[21] LIP6-MoVe, The CPN-AMI Home page., http://www.lip6.fr/cpn-ami.
[22] F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont, “An approach to

model variations of a scenario: Application to Intelligent Transport
Systems,” inWorkshop on Modelling of Objects, Components, and
Agents (MOCA’06), Turku, Finland, June 2006.

[23] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose,
Eclipse Modeling Framework, ser. The Eclipse Series, E. Gamma,
L. Nackman, and J. Wiegand, Eds. Addison-Wesley Professional,
August 2003.

