Mastering Complexity in Formal Analysis of Complex Systems
Some Issues and Strategies Applied to Intelligent TranspoiSystems

Fabrice KORDON
Université Pierre & Marie Curie, Laboratoire d’'Informatigyde Paris 6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France
fabrice. kordon@i p6.fr

Abstract as B [8] allow to describe a system using axioms and then
to prove a property on the specification as a theorem to be

Modern Intelligent Transport Systems are large, dis- demonstrated from these axioms. These methods are very
tributed, and at least partially embedded systems. Theyinterested because the proof is parameterized. However,
raise new challenges through safe design because of theittheorem provers that are required to elaborate the proof are
characteristics that are not easily managed in formal meth- difficult to use and still require highly skilled and experi-
ods. enced engineers.

The purpose of this paper is to set up a methodology that In contrast, model checking [17] is the exhaustive inves-
selects appropriate techniques for the modeling and anal- tigation of a system’s state space and can be automated very
ysis of such systems. Our methodology relies on Symmeteasily. This technique is theoretically limited by the camb
ric Nets (formerly known as Well Formed Petri Nets). We natorial explosion and can mainly address finite systems.
make intensive use of this formalism’s capabilities toescal However, recent techniques based on so called symbolic
up analysis and set up a roadmap for the design of dedi- techniquesallow to scale up to more complex systems.
cated model checkers. So, if formal verification techniques are getting more
mature, our capability to build even more complex systems
also grows quickly. To catch up with problems’ complexity
and get fair results with formal analysis, we must fight the
complexity at every stage of the process: from specification
to verification itself. This requires a methodology thataoft

Future systems tend to be distributed and at least par-make apragmaticuse of formal methods. By "pragmatic”,
tially embedded. Distribution brings a huge complexity and we mean that assumptions are made to simplify the system.
a strong need to deduce possible (good and bad) behaviorgjsually, such assumptions are domain specific. So, counter
on the global system, from the known behavior of its actors. to the current trend that aims to unify process development,
When such systems are embedded, new constraints of timgome variations must be investigated.
and space may also occur as well as a strong relationship This paper proposes to summarize the design method-
with more physical constraints (such as measures provideclogy and techniques we use to handle very large sys-
by DSP on the environment). tems throughout the modeling and verification process. We

For such systems, we know that classical developmentwill illustrate these techniques in the context of Intedig
methods are not adequate since the coverage of possible exFransport Systems (ITS) or, in other words, mechanisms
ecutions is too low [21]. This is an old observation that that provide driving assistance to a vehicle. This applica-
leads people to investigate the use of formal methods. How-tion domain is very representative of tomorrow’s distrémiit
ever, these still lack in user friendly languages and td@s t systems where traditional programming approaches must be
can enable their use by non-specialists. So, if major actorsadapted to provide the required security. The techniques
in companies or institutions dealing with critical applica presented in this paper correspond to years of modeling and
tions acknowledge that formal methods are necessary, theyerification experience on large systems.
also agree on the fact they must be able to scale up: today,

1The wordsymbolicis associated with two different techniques. The

only parts of systems are formally analyzed. . \ . .)
yp y y y first one is based on state space encoding and was introdncii

So far, there are two typ?S of formql methodlgebraic The second one relies on set-based representations of b&atmg sim-
approaches andodel checkingAlgebraic approaches such ilar structures and was introduced in [14].

1 Introduction

The paper is structured as follow. Section 2 presents the We propose to esure a safe entrance thanks to the follow-
problems of ITS and the associated problems for verifica- ing strategy:
tion. Then, section 3 describes the formal notation setecte
to model such systems. We elaborate a design methodol-(8) The motorway has ead-side cente(RSC) that en-
ogy in section 4 and show how such specifications can be ables communication with vehicles and can compute

verified using appropriate model checkers (section 5). commands related to safety or flow control.
. (b) Vehicles receive their positions thanks to a sateléite |
2 Intelligent Transport Systems calization technology [11] (it may be combined with
ground installations and digitized maps) and send them
In Intelligent Transport Systems (ITS), road operators, periodically to the infrastructure. Subsequently, the in-
the infrastructure, VehiCleS, their drivers and other road frastructure is able to maintain a dynamic map of all

users must cooperate to provide an efficient and secure sys- yehicles in its range of communication.

tem. Such systems are even more complex to analyze than

previous distributed systems and require more reliability (c) The infrastructure, vehicles behaviors and interastio
since lives can be lost. Development of such systems is a follow an interaction cycle divided in three main steps:
challenge supported by string research programs in Europe, 1) vehicles get their positions from the satellite local-

USA and Japan [10]. ization system, 2) they send this information to the in-
In this section, we first illustrate some ITS issues by frastructure and 3) when the infrastructure has all po-

means of a simple example and then, discuss the major sitions of all vehicles, it issues commands according to

problems raised by formal modeling of such systems. its strategy.

2.1 ITS Example: Safe Insertion in a Motorway Let us suppose to simplify the problem that all vehicles

Vi,j are equipped with communication devices and that the
We provide a typical example for a "black-spot" (a dan- drivers follow instructions provided by the road-side ent

gerous section in the motorway). It is a freeway entrance in (currently, non equipped vehicles are also considered and
which we want to preserve a "Safe Insertion". Figure 1 con- modeled differently).
siders a motorway with two lanes:; I{the rightmost one)
and Lp. An entrance to the motorwayplis connected to 2.2 Modeling Issues for ITS
L1. Vehicles are using the two lanes. We use the notation
Vi j, wherei is the lane number anfis the vehicle iden- In such systems, two types of properties are of interest:
tifier. Vo j, vehicles are entering the motorway. We want quantitative(i.e. performance) andualitative (possibility
to study a cooperative insertion of vehicles arriving in the of having a wrong behavior). We focus here on qualitative

entrance lane. properties on the system. The main goal is to understand the
beginning of the black spot snd of the black spot system’s beh_awor in prde_r to elaborate successful siesteg
L ! Implementation details will follow later on.
= D ______ Vib_ E Modeling and verifying this type of system raise the fol-

L % % : lowing concerns:

() we must manage dynamic actors like cars that enter

and leave the black-spot,
road-side center

(iy there are physical aspects to be modeled,

Lo

Figure 1. Safe Insertion in a motorway. @iy we must preserve a fair progression of the system in

order to avoid having an actor perform several actions

We want to let \4j vehicles get into the main traffic while others do nothing.

without violating the following properties:

1. the distance between two vehicles in the same lane2.3 Solving ITS Modeling Issues

must be greater than a minimum safe distance to let

drivers react to sudden events; There are several modeling issues to solve. We first have
to select an appropriate notation to model the system. We
then have to elaborate a design methodology based on this
3. V;,j vehicles should not have to stop. notation.

2. Vo j vehicles must eventually get into the motorway;

It is obvious that UML is not suitable for a formal anal- <P.all> out

ysis of a system’s behavior. It is useful to structure the sys ~ Class <p>
tem. However, the relationship between UML class, be- P is1..PR;

havior and state diagrams is not yet sufficiently precise to & S 1-V; InCS
. , . Domain <p> <p, vz
enable formal analysis of the model's behavior. If recent i <pygs: ' CR
evolutions of UML bring a more precise semantics, the con- var Comptge val Mutex
nection between diagrams is still variously interpreted. pinP; T <val.all>
Algebraic techniques such as B can be useful for the ver- V. v2in Val; outCS ELV’
ification of behavioral components as Siemens proved in the C—=<v

METEOR project [1]. However, it was also known as a dif-
ficult technique to automate compared to model checking Figure 2. Example of Symmetric Net.
based approaches. We thus selected the latter type of tech-
nigues to provide more automated tools. o

Model checking could be performed on tools managing cglculus is finished. PIacMuteg .h.andles mutual exclu-
time such as UPPAAL [7] that relies on timed automata or sion between threads. Plaoqt |r_1|t|ally holds one token
TINA [6] that relies on Timed Petri Nets. However, we do for each value irP (the marking is then notee_t Pall >)
not need explicit time management and verification of tim- and placeCR holds one value for each valueVfal. Place

ing constraints prevents us from analyzing larger systemsMUteX orlwl-y contains one token V‘,"th no value.
based on our very latest techniques. Transitions represents evolution of the system. A tran-

We selected Symmetric Nets. Symmetric Nets were for- sition_ is fired when all precon_d_it_ion places ho_ld a_sufficient
merly known as Well-Formed Nets, a subclass of High-level markmg. For_example, Trans!tlonCS can be fired '_f there
Petri Nets. The name "Symmetric Nets" have been choser]S ON€ token irout, one token irCR and one token iMu-
in the context of the ISO standardization [23]. This nota- tex. When it fires, it is associated to a binding represented
tion provides facilities that are of interest for the anays bY the Va!‘%es .op.andv (placeMutex h_as no type).. When
of complex systems if we select an appropriate modelingth's transition is fired, the tuple p,v > is dropped into the
methodology and techniques. postcondition place.

In the remainder of this paper, we present the Symmet-] .
ric Net formalism in section 3. Then, section 4 describes 3-2 Correspondence with Place/Transition Nets
our proposal for a methodology selecting efficient modeling
strategies to solve the problems mentioned in section 2.2. Simple Petri Nets are of interest since it is possible to
Section 5 finally presents how our verification techniques compute structural properties. Structural propertiedare
can scale in the description of state spaces for this type ofmulas that can be computed without exploring the full state
systems. space [20]. Here are two examples of interesting properties

e invariants: a conservative formula on tokens in places

3 Symmetric Nets, a Formal Modeling Tech- o
or transitions

nique
e bounds: the minimum and maximum number of tokens
The goal of this section is to provide an informal view

of Symmetric Nets. Formal definitions can be found in [14,
20].

InCS_1_1 InCS_1_2 IncsS 2 1 InCS_2_2
S - -

compute_2_:

3.1 Basics on Symmetric Nets

Let us introduce Symmetric Nets (SN) by means of a
small example. The Petri net in figure 2 represents a class
of threads (identified by an identity in typ® accessing a
critical resourceCR Threads can get a value within the

typeVal from CR. Constant®R andV are parameters for outCS_ 11 outCS_12 ouCS21 ouCS 2.2
the system.
The class of threads is represented by plamesand Figure 3. Unfolded P/T Net from figure 2.
compute The placecompute corresponds to some com-
putation on the basis of the value provided®R. At this It is of interest to note that such properties can be com-

stage, each thread holds a value that is replaced when theuted after amnfolding This operation deploys the SN into

out: 1<><P 00> | P_00| =2 |Val 00| =2

an equivalent PTN to enable the computation of structural R <Val 00> [P.00] =2 | val 00| =2
properties. Incs_ ouCS
The principle of unfolding is simple: an SN-place is m'm‘v”
transformed into a set of PTN-places where each PTN-place
represents a possible value stored in the SN-place. Let usiil . . .
lustrate this correspondence in Figure 3 that represeats th Figure 5. S_ymbohc reachability graph for the
PTN associated with the SN of figure 2 with= [1..2] and model of Figure 2.
Val = [1..2]. Thanks to specialized decision diagram based
techniques, unfolding of large models can be handled [25].
What makes this technique interesting is that it allows The definition of states in figure 5 must be read as follow.
computing of some structural properties that are difficult In the initial state, all possible values in typeare stored in
to compute in SPNs. In the model of figure 2, it is obvi- placeout and all possible values in typéal are stored in
ous that the formulacard(out) + card(computg, where placeCR. In the other state (when transitionCS fires),
card(p) represents the number of tokens in plpaemains all possible values of typl but one are in placeut and all
constant all over the state space. There is a projection inpossible values of typ€al but one are in plac€R. Place
the unfolded model with the formuleard(card(out_1) + computethen contains one token composed with one value
card(out_2) + computel_1) + card(computel_2 + of typeP (the one that is not in placzut) and one value of
card(compute2_1) + card(compute2_2). Section 4 typeVal (the one that is not in placER). Thus, this sym-
provides details on how and when such properties can bebolic state represents all possible permutations of the cou

1>
<P_00, Val _01>
i _oo>

used. ple of tokens extracted from placest andCR when fir-
_ N ing transitioninCS. This symbolic technique, based on the
3.3 Symbolic Reachability Graph computed symmetries in a symmetric net [28], is success-

ful when representing very large state space: it provides an

Besides computation of structural properties, Petri Nets exponential gain compared to the construction of concrete
allow elaboration of the state space of the systems for modektates [24]. This set-based representation is very efficien
checking, thanks to the firing rule. The state space is usuall especially when systems are symmetric, which is the case in
calledreachability graphand represents all concrete states numerous distributed and embedded systems. This is partic-
of the system. Figure 4 presents the reachability graph forularly the case in Intelligent Transport Systems sincelaimi
the Petri net of figure 2 with constarR& andV equalto 2. algorithms are supposed to be executed in each car.
This state space has 5 states (the initial state is repezsent

by a double circle) ; it will grow following the cardinality

of the cartesian produgtx Val, 4 Modeling Methodology and Techniques

WSEIL L Mis2a g, Bl This section presents our proposal for modeling and ana-
o P Fer i lyzing ITS-like systems. We first sketch a methodology and
/Q then put some emphasis on the modeling techniques that are
R Ncs - °“,§§52 optimal for this type of systems.
e\ R o T mS
v=1 1w v=2 j 4.1 Design Methodology
Mit ex: <k../>‘
P T L A notation like Petri Nets should be associated with
another notation to keep some structure to maintain the
Figure 4. Reachability graph for the model of specification coherence with a minimum effort for the de-
Figure 2. signer. We propose to hav@N-moduleshat are "UML-

like classes" containing sequential automata with inter$a
expressed using basic Petri nets composition mechanisms:
The main interest of SN resides in their potential to ex- place fusion (asynchronous communication) or transition

press symbolic states in a system usingsymabolic reacha- fusion (synchronous communication).
bility graph. A state in the symbolic reachability graph does Figure 6 illustrates this design approach. The architec-
not represent a concrete state but a set of concrete statetsire of the specification is performed using SN-modules.
that have a similar structure. This is well illustrated infig The internals of these modules are assembled according to
ure 5. The symbolic reachability graph is composed with the places and/or transitions to be fusioned into a larger
two nodes only and will not grew when the tygeandVal model to be analyzed. Of course, several hierarchicaldevel
get more values. may be considered.

==l = param
m\/‘\\é:: ‘\/M SN modules Cx
Class x>
Assembling Cxis 0.5 <xy>
DCy is 0..6; values <g,(l)>, <%,%3
omain D <2,1>,<3,2
SN spec. D is <Cx,Cy>; <4,3>, <5,6:
Vir in Cx; <y> oy
. . . yin Cy; |
Figure 6. Overview of the design methodol- recil‘“
ogy. (@ (b)

i Figure 7. Example of complex function dis-
Each SN-module may have several internals, each one . atization.

corresponding to a strategy or to a given configuration to
be experimented for the system. So, exploration of the sys-
tem’s behavior can be performed easily, similar to switghin

a class implementation by another one in programming lan- F19uré 7 represents an example of function discretiza-
guages. tion. Left side of the figure (a) shows a function that is dis-

To solve the specific problems identified in section 2.2, crétized and the right side (b) shows the corresponding Petr

we must select appropriate modeling techniques. net mo_del. Th_e function dlscretlzatl_o_n |s_stored in plwmle

ues; y is obtained thanks to the unification of variakle
4.2 Managing Dynamicity the tvyo input arcs of the transition. Please note tiadties
markings remain constants.

This technique can be generalized to any functica
f(x1,X2,...,Xn), regardless of its complexity. Non determin-
istic functions can also be specified the same way (for ex-
ample, to model potential errors in the system). Let us note

Theoretically, the number of vehicles passing into the
black-spot is potentially infinite. However, we can conside
that vehicles leaving the black-spot are recycled to come
back into it. Thus, we can consider a finite number of vehi-
cles according to the scenario (for example heavy traffic or that:
light traffic). This is of particular interest since, sinmile
embedded systems using a thread pool, we only manage a
vehicles pool.

The same technique can be used for any type of "unlim-
ited resources"”. This is relevant since we do not care about e given a programmed function, it is easy to automati-
resources as entities but about all possible situations the cally generate the list of values to store in the initial
are involved in. marking of the place representing the function.

This technique also brings an interesting feature. The
corresponding system is not expected to deadlock. Thus, a The only drawback of this technique is a loss in precision
deadlock may correspond either to a property violation or compared to continuous systems that require appropriate
to some mistake in the model itself. This is useful during hybrid techniques [15]. If such a discretization enables th

e the discretization of any function becomes a modeling
hypothesis and must be validated separately (to evalu-
ate the impact of imprecision due to discretization),

the verification process. use of more user-friendly techniques, they must be checked.
For example, if we consider distances in our black-spot ex-
4.3 Modeling Complex Functions ample, we must ensure that uncertainty remains in a safe

range. This means that our metrics must be compliant with
The main problem of SN is to provide only a limited the precisionto ensure, for example, thatiif follows Vi 2,

set of mathematical functions to the system designer. Thisthe minimum distance ensures that no intersection between
is required to keep the mathematical structure that enableghe associated volumes is possible.
the computation of symmetries in the specification, thus en-
abling the use of the symbolic reachability graph [28]. To 4.4 Preserving a Fair Execution
cope with the modeling of complex functions (for example,
computation of braking distance according to the current In this type of system, all actors simultaneously behave
speed of a vehicle), we must discretize and represent thenin parallel. It is thus not reasonable to exhibit problems
in a specific place. Such a place can be held in an SN-related to the fact that one actor progress while all others
module ; it then represents the function and can be stored inare not executed. The modeling solution is there to relate
a dedicated library. the model to a timeline that beat the execution of the system.

This timeline can be modeled explicitly or be implemented state spaces to the encoding of states using decision dia-
in the firing rule that includes fairness execution of theiPet grams [13] (also calledymbolic techniqués
Net token game.

If we consider our black-spot example, the cycle can abodef a b c d e f
be trivially extracted from the behavior of a vehicle as de- 0110011 @O0
scribed in point (c) in section 2.1. Here the timeline en- 011011 OO0
sure a sliced execution of the specification. At each time 011101 0500
unit (not necessarily counted), all vehicle make a move and 011100 O)
the infrastructure takes decisions to be executed duriag th (a) (b)

next slice. Communication delays can also be implemented

when required. Figure 8. Principles of symbolic encoding of

) states.
5 Towards Analysis of ITS System

Let us note that the type of system we describe here are The principle of state encoding is illustrated in figure 8.
very symmetric: vehicles can be permuted easily. Thus,Let us consider that a state in the system is represented as
the Computation of Symmetries that enable the use of the& Boolean vector defining the values of a set of variahles
SN’'s symbolic reachability graph (see section 3.3) can beto f (part(a)). If we assume that an action in the system
operated successfully. does not change the entire vector, we can consider a differ-

Nevertheless, analysis remains quite difficult since cur- ential encoding of states. In our example, variabltsc do
rently implemented model checkers are not sufficient. The ot change : it is unnecessary to represent their value more
ones that implements a concrete state space cannot handi@an once. The Binary Decision Diagram (BDD) (pax
more than a few 1®states. encodes this system and promote share of common parts in

GreatSPN [3], a model checker imp|ementing the sym- the system. The main drawback of this teChnique is that its
bolic reachability graph was successfully used to analyze aefficiency is strongly related to the variable order ; if we en
middleware core having about ¥concrete states [24] but ~ code the BDD frong to a, sharing performances are very
it seems inadequate for the complexity of ITS systems whenPOOr.
discretization is realistic and requires types with marly va This techniques was successfully elaborated to analyze
ues (in [12], only small configurations could be analyzed). hardware systems. It has been enhanced and numerous de-
This is also observed for model checker that support a sym-Cision diagram based techniques are now available. One
bolic encoding of the state space such as SVM [5]. of these technique, Data Decision Diagrams (DDD) [18],

Our diagnosis, according to an analysis of the model has been elaborated to encode discrete values instead of bi-
checkers’ behaviors shows that current techniques are nofiary ones. Itis a basis to support symbolic/symbolic tech-
yet able to scale up for these systems. There is also soméiques [29]: thesymbolic encodingf the symbolic reach-
side effect from the modeling technique that must be con- ability graph This technique seems promising for the stor-
sidered in the model checker as domain specific optimiza-age of very large state spaces.
tions.

However, we are confident that model checkers willsoon 5.2 Parallel model checking on a cluster
be able to analyze ITS-like systems thanks to the following

techniques: As shown before, the main problem of model checking
is memory consumption. However, with diagram decision
based techniques, another problem arises. The principle of
o the design of parallel model checkers in clusters of ma- these techniques is to trade memory against CPU. As a typ-
chines, ical example, when a new symbolic state is computed, it
has to be compared to existing ones. This requires all states
to be canonized in order to have a common and compara-

¢ the use of symbolic/symbolic techniques,

e the management of stable marking,

e the use of hierarchical encoding technigues. ble representation suitable for comparison. Even optithize
such an operation requires CPU.
5.1 Symbolic/Symbolic Techniques So, distributing a model checker on a cluster of machine

brings two advantages:
We already mentioned the symbolic reachability graph
in section 3.3. Symbolic reachability graph provides sim- e states are generated in parallel thanks to an appropriate
ilar performance in mastering the complexity of large hash function,

e the model checkers takes advantage of the CPU andgraph provides a linear factor: the philosopher patternis a
memory available in the whole system. tomatically extracted and the gain is thus linear, leading t

Expected results are promising and the research commuEhe analysis of just a few Ephilosophers, like in [16] (left

nity is currently working in this direction. As an example, side of the figure). Based on SDD, a recursive folding of the

the famous SPIN model checker has already been eXperproblem can be easily encoded. Instead of repeating a pat-

imented in a parallel way [26, 9]. We also successfully tle/rznth?mes,fwe C](.J/ZS'[IdEIr a pf}lloso.pmer .tg\blefatlrs] b?ng two
implemented a parallel version of GreatSPN that provides apies or four ables, etc. (right side of the Figure)

. . . Using this recursive encoding technique, we were able to
supra-linear acceleration factor for many examples in our 9 g 9

benchmark [22] store the state space for t8°9°%in a 512 Mbyte machine.
' Generalization of such a technique is still a challenge but
5.3 Management of Stable Marking since peer-to-peer approaches, like in ITS, are usually ver

symmetric (as for the philosopher problem), we are confi-

The technique presented in section 4.3 generate placegent that, in some cases, such a representation is possible.
for which marking is large and remains constant. This
should be taken into consideration by model checkers. Ing Conclusion
fact, a model checker like GreatSPN does not handle such

cases and thus, this stable marking is reproduced for each

ted state. thus leading to a h In this paper, we have summarized the design method-
tg?grr]lera ed state, thus leading to a huge memory COnsump(')logies and techniques we have developed to model and

For model checkers using symbolic encoding of states analyze very large systems. We are currently working on
(as well as for a symbolic/s mt))/olic model checker), such problems similar to the ITS case study that was presented
places should be ydetectedysince their marking is ’highly as an illustration of future complex systems to be designed,

shared by all states in the system. A pre-analysis of theanalyzed and implemented.

2 : ' . To scale up in the formal analysis of such complex sys-
specification can easily detect such configuration and pro- R "
. . ; . : tems, we must work "vertically”. It means that all phase of
vide hints for an appropriate encoding technique.

the modeling and analysis process must cooperate. This can

5.4 Hierarchical Encoding Techniques and Re- be done in two ways:

cursive Folding e Some model checking techniques can be stacked to

handle larger systems, as in symbolic/symbolic model

Symbolic encoding of a state space (concrete or sym- -)
y g P (y checking techniques.

bolic) relies on the sharing of state patternsin the staeep

of a system. Recent work investigates a hierarchical repre-

sentation that could increase the sharing of such patterns
on a larger scale. For that purpose, new representations,
such as Set Decision Diagrams (SDD) [19] are being inves-

tigated.

In some favorable case (i.e. very regular symmetries in
the system), the results are fantastic. Let us analyze what
can be provided for the dining philosopher problem [2], as
experienced in [27].

e When possible, a modeling technique should be cou-
pled with the corresponding model checking technique
that enables reduction of the state space. For example,
the discretization of complex functions by means of a
SN-place having a stable marking must be consider-
ing to encode a state by means of decision diagram to
represent the marking of this place once.

Our methodology and techniques should provide better

facilities to engineers who have to cope with such prob-
<ommzee 1table lems. We use these advanced model checking techniques
N philosophers reil 2 half-table and emphasize domain specific optimizations in associated
=\ 4 fourth-table tools. Most of the techniques presented in this paper have

T-==" 8 heigth-table been implemented, either as prototypes or in CPN-AMI [4].

linear gain exponential gain The objective is to provide a prototype for a CASE environ-

ment dedicated to the design and analysis of complex sys-
tems that includes all these techniques in one single model
checker.
Later on, we can imagine that model checkers will be
elaboratean the fly according to the techniques enabled to
Figure 9 shows the structure of the table in the dining analyze a specification according to domain specific char-
philosopher. FoN philosophers, the symbolic reachability acteristics.

Figure 9. Possible structuring of the dining
philosopher problem.

References

(1]
(2]
(3]
(4]
(5]
(6]

[7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Atelier B, http://ww. atelierb. societe.conindex_

uk. ht m 2006.

Dining philosophers problem,http://en. wi ki pedi a.

or g/ wi ki / Di ni ng_phi | osophers_probl em 2006.
GreatSPN V2.0http://ww. di.unito.it/~greatspn/

i ndex. ht m , 2006.

The CPN-AMI Home page, url http:// ww.|ip6.fr/
cpn- ani, 2006.

The SMV System, http://ww. cs. cnu. edu/
~model check/ snv. ht m , 2006.

TINA, Tlme petri Net Analyzer,http:// ww. | aas.fr/
tina, 2006.

UPPAAL home pagehtt p: // ww. uppaal . com, 2006.

J.-R. Abrial. The B book - Assigning Programs to meanings
Cambridge University Press, 1996.

J. Barnat, V. Forejt, M. Leucker, and M. Weber. Di-
VSPIN - a SPIN compatible distributed model checker. In
M. Leucker and J. van de Pol, edito4th International
Workshop on Parallel and Distributed Methods in verifiCa-
tion (PDMC'05), Lisbon, Portuga, 2005.

R. Bishop. Intelligent Vehicle R&D: a review and corgtaf
programs worldwide and emerging trends. In J. Ehrlich, ed-
itor, Annals of Telecommunications - Intelligent Transporta-
tion Systemsvolume 60, pages 228-263. GET-Lavoisier,
March-April 2005.

J.-M. Blosseville. Driving assistance systems anddroa
safety: State-of-the-art and outlook. In J. Ehrlich, edlito
Annals of Telecommunications - Intelligent Transportatio
Systemsvolume 60, pages 281-298. GET-Lavoisier, March-
April 2005.

F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont. An ap-
proach to model variations of a scenario: Application to In-
telligent Transport Systems. Morkshop on Modelling of
Objects, Components, and Agents (MOCA'0B)rku, Fin-
land, June 2006.

J. Burch, E. Clarke, and K. McMillan. Symbolic model
checking: 189 states and beyond. Information and
Computation (Special issue for best papers from LICS90)
98(2):153-181, 1992.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Hatld
On well-formed coloured nets and their symbolic reacha-
bility graph. In K. Jensen and G. Rozenberg, editéhs-
cedings of the 11th International Conference on Appligatio
and Theory of Petri Nets (ICATPN’90). Reprinted in High-
Level Petri Nets, Theory and ApplicatioBpringer-Verlag,
1991.

P. Christofides and N. El-Farr&ontrol Nonlinear And Hy-
brid Process Systems: Designs for Uncertainty, Constsaint
And Time-delaysSPringer Verlag, 2005.

G. Ciardo, G. Luettgen, and R. Siminiceanu. Efficiemmsy
bolic state-space construction for asynchronous systéms.
M. Nielsen and D. Simpson, editor&pplication and The-
ory of Petri Netsvolume 1825 of ecture Notes in Computer
Sciencepages 103-122. Springer-Verlag, 2000.

E. Clarke, O. Grumberg, and D. Peledilodel Checking
MIT Press, 2000.

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Paoitned,
and P.-A. Wacrenier. Data decision diagrams for Petri net
analysis. InProc. of ICATPN’2002volume 2360 of_ec-
ture Notes in Computer Sciengeages 101-120. Springer
Verlag, June 2002.

J.-M. Couvreur and Y. Thierry-Mieg. Hierarchical dsicin
diagrams to exploit model structure. B&th International
Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE'Q5$pringer Verlag, to be pub-
lished, October 2005.

C. Girault and R. Valk Petri Nets for Systems Engineering
Springer Verlag - ISBN: 3-540-41217-4, 2003.

J. Gogen and Luqi. Formal methods: Promises and prob-
lems.|EEE Software14(1):75-85, 1997.

A. Hamez, F. Kordon, and Y. Thierry-Mieg. |ibDMC: a
Library to Operate Efficient Distributed Model checking.
Technical report, Master’s thesis, LIP6, Université P. & M.
Curie, 2007.

L. Hillah, F. Kordon, L. Petrucci, and N. Tréves. PN
standardisation : a survey. limternational Conference
on Formal Methods for Networked and Distributed Sys-
tems (FORTE'0OG)pages 307-322, Paris, France, September
2006. IFIP.

J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baa
and T. Vergnaud. On the Formal Verification of Middle-
ware Behavioral Properties. I8th International Work-
shop on Formal Methods for Industrial Critical Systems
(FMICS’04), pages 139-157. Elsevier, September 2004.

F. Kordon, A. Linard, and E. Paviot-Adet. Optimized
Colored Nets Unfolding. Irinternational Conference on
Formal Methods for Networked and Distributed Systems
(FORTE'06) pages 339-355, Paris, France, September
2006. IFIP.

F. Lerda and R. Sisto. Distributed-memory model chegki
with SPIN. InProc. of the 5th International SPIN Workshop
volume 1680 oLNCS Springer-Verlag, 1999.

Y. Thierry-Mieg. Techniques for the model checking of high-
level specifications PhD thesis, Université P. & M. Curie,
2004.

Y. Thierry-Mieg, C. Dutheillet, and I. Mounier. Auto-
matic symmetry detection in well-formed nets. Pnoc. of
ICATPN 2003 volume 2679 ol ecture Notes in Computer
Sciencepages 82-101. Springer Verlag, June 2003.

Y. Thierry-Mieg, J.-M. llié, and D. Poitrenaud. A sym-
bolic symbolic state space representation.24th Interna-
tional Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’'Q4)ages 276—291. Springer
Verlag, LNCS 3235, July 2004.

