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Abstract. Heterogeneous non-functional requirements of Distributed Real-Time
Embedded (DRE) system put a limit on middleware engineering: the middéew
must reflect application requirements, with limited runtime impact. Thus, build
ing an application-tailored middleware is both a requirement and a challenge

In this paper, we provide an overview of our work on the constructiomiof
dleware. We focus on two complementary projects: the definition of middew
that provides strong support for both tailorability and verification of its imaés;

the definition of a methodology that enables the automatizing of key steps of
middleware construction.

We illustrate how our current work on PolyORB, Ocarina and the usetafifets
allows designer to build the middleware that precisely matches its application
requirements and comes with precise proof of its properties.

1 Introduction

Middleware first emerged as a general solution to buildithisted applications. Models
and abstractions such as RPC, distributed objects hidatitesic of distribution from
the user, and provide a programming model close to the lasa.c

In the meantime, the need for Distributed Real-Time Embéddtestems (DRE)
increases regularly. Such systems require executionsinfretures that have specific
capabilities, some of which conflict with “plain old middlave technology”:

— Distribution cannot remain hidden from the developer. The semanticseotlitt
tribution models must be adapted to real-time applicatieeds. For instance, the
application entity should be well adapted to schedulingyaiasuch as the pub-
lish/subscribe model [RGS95]. Besides the impact of ruatantities (e.g. com-
munication channels, memory management) on timelinessterminism must be
fully assessed.

— Real-Timesngineering guidelines must be supported by the middlewérie mid-
dleware follows a clear and precise design so as to guaréatdeterminism and
its temporal properties; it comes with complete proofs thdbes not withdraw
the properties of the application [Bud03]. Finally, a metblogical guide, support



tools and Quality of Service (QoS) policies help to tailoe thiddleware with re-
spect to the application requirements.

— Embeddedargets that have strong constraints on their resourcgs@®U, mem-
ory, bandwidth) or limited run-time support by a real-tinextkel (no exception, no
dynamic memory, limited number of threads, etc). So, midele must cope with
strong limitations; and scale down to small targets. In soases, new functions or
QoS policies are added to cope with platform limitationg, data compression for
systems with a narrow bandwidth.

So, there is a need to 1/ make available to the developer sueraals of the mid-
dleware to allow its tailoring and adaptation; 2/ define aefiggment process and sup-
porting tools to ease this adaptation and ensure its iscosieh respect to middleware
constraints.

Let us note a DRE is usually composed of several componentwith differ-
ent requirements. Therefore, both functional interopiétaland compatibility of non-
functional policies must be contemplated. Such assesscagiatility is seldom con-
templated by middleware architects.

Another common pitfall when designing DRE is the use of “Caencial Off-The-
Shelf” (COTS) components. This allows to reduce costs anenpial errors by reusing
already tested components. But this puts a strong limit atdheware tuning, verifica-
tion and performance capabilities.

Engineers of DRE systems require middleware that have geddrmmance (includ-
ing efficient marshaling), real time (use only determigistonstructs), fit embedded
constraints. Besides, they also need to ensure their ube afildleware is correct (no
deadlock, deadline are respected, etc). Hence, this aatlisnty for a middleware, but
also for a design process and tools that allow the user tdutlgreine the middleware
it to needs, instead of selecting a “best effort” middleware

The objective of the PolyORB projectis to elaborate bothddteware and a design
process. We propose an innovative architecture that aipowiding better control on
the configuration of the middleware, and enables the caeafalysis of its properties.
This paper presents an overview of our work in this area fempidist years.

In the next section, we motivate our work by reviewing magsities when designing
middleware for DRE systems, revolving around tailorapitind verification concerns.
Then, we present our current results in middleware ardhitecand how we efficiently
address both concerns by defining an original architectMeanote that another limit to
the adoption of middleware is the lack of tool support; wentdescuss our current re-
search work around Architecture Description Language tia ool that help building
and verifying application-specific middleware configuras.

2 Tailorable and Verifiable Middleware: State of the Art

In this section, we discuss limits and trade-offs when aterang tailorable and ver-
ifiable middleware. Even though both capabilities are oériest for the application
designers, we note that there is usually little support okt by the middleware.



2.1 From Tailorability to Verification

The many and heterogeneous constraints of distributedcapiphs deeply impact the
development of distribution middleware. Middleware shbslipport developers when
designing, implementing and deploying such systems inrbgémeous environments
and evaluate so called “non functional” requirements (&@oS or reliability).

The design and implementation of tailorable middlewareis a (almost) mastered
topic. Design patterns, frameworks have proved their viduadapt middleware to a
wide family of requirements [SB03].

In the mean time, middleware platforms have shown in varfgegects they can
meet stringent requirements. They are now used in manyanigsitical applications,
including space, aeronautics and transportation.

Building distribution platform for such systems is a conxaiask. One has to cope
with the restrictions enforced to achieve high integrignstards, or to meet certifica-
tion requirements, such as DO-178B. Thus, one has to be aladssert middleware
properties, e.g. functional behavioral properties suchtsence of deadlockeequest
fairness or correct resource dimensioningut alsotemporalproperties.

Hence, verifying middleware is now becoming a stringentunegment in many
DRE systems. The developer must ensure beforehand thppiisation design is com-
patible with middleware capabilities.

We claim middleware engineering should now provide pravisifor some verifi-
cation mechanisms as defined by the ISO committee [ISO94freed confirmation by
examination and provision of objective evidence that $etrequirements have been
fulfilled. Objective evidence is information which can beved true, based on facts
obtained through observation, measurement, test or otleans”

However, we note there is a double combinatorial explosibewconsidering mid-
dleware as a whole: the number of possible execution sa@n&oi one middleware
configuration increases with the interleaving of threadd eeguests; the number of
possible configurations increases with middleware addjpyadnd versatility. Finally,
the behavior of a middleware highly depends on the configamatarameters selected
by the user. Thus, verifying a middleware is a complex task.

Some projects consider testing some scenarios, on mutipjet platforms. The
Skoll Distributed Continuous Q&A project [MPY04] relies on the concepts of dis-
tributed computing to test TAO many configurations and sdes@n computers around
the world. This provides some hints on the behavior of thedieidare, but cannot serve
as a definite proof of its properties.

One may instead contemplate the verification of middlewaopgrties. Yet this is
usually done on a limited scale, restricted to the very $pestenarios of the applica-
tion to be delivered and the semantics of the distributiodehased (e.g. RT CORBA),
for instance using the Bogor model checker [DDB3]. But the middleware must be
considered as part of the application and must not be diedafrom the verification
process as a blackbox would be.

However, middleware implementations of the same spedificatmay behave dif-
ferently [BSPNOO]. Some properties may be withdrawn by enmntation issues, such
as the use of COTS, that are hidden by this modeling procedsy different inter-
pretation of the same specifications. Besides, such a \aidit process usually does



not take into account implementation-defined configuraiptions, and target capabil-
ities. Finally, such methods may be limited by combinataialosion that arise when
building the system state-space.

Thus, we note it is hard (if not infeasible) to verify exigtimiddleware as a whole.
One should go forward and integrate verification to the designiddleware.

2.2 Addressing Verification Concerns

The formal-based verification of distributed applicati@hbvioral properties is usually
the domain of verification-domain experts, using specifidfication techniques, e.g.
calculi, formal methods. However, such a verification pescis usually used only to
verify the semantics of the application (e.g. set of correessage sequences) [Jon94].

Turtle-P [AdSSKO03] defines a UML profile for the validation distributed ap-
plications, linked with code generation engines and vébdatools built around RT-
LOTOS [LAAO4]. Validation is done either through simulatior verification of timed
automata. However, this provides no information on the dyitg distribution frame-
work or middleware integrated to the system; and thus regitieescope of the proper-
ties proved for the application under study.

Finally, it should be noted that complex semantics of distibn models is difficult
to model and usually reduced: complex request dispatchatigi@s, /0O or memory
management are simplified. This reduces verification casalso interest in the mid-
dleware modeled that looses many configuration capabilitie

Thus, we claim the verification process of a distributed i@gtibn should also focus
on the middleware as a building block, and thus middlewachitacture should be
made verification-ready so as to ease this process, withmpéding its configurability.

Still, this increases the complexity of the verification geges: one should focus on
the actual configuration being used. This means that mofltie configuration should
be built “on demand”, and that a strong link between modeliamgdementation exists.

From the previous analysis, we conclude that a dedicatezkpsato build and verify
tailorable middleware is required. This process shoulddfimeld around well-grounded
engineering methods and foster reusable and tailorabt@a®@ components. Besides,
verification techniques should be included in the process$ert strong properties of
complex configurations, using the most suitable methodsemiging on the nature of
the property (causal, time, dependability, etc.).

3 The Schizophrenic Architecture: a Tailorable and Verifiable
Middleware

In this section, we discuss our approach to design middewledicated to the require-
ments of a given application. This approach can be viewedcasdesign between the
application and its supporting middleware. As an illustratof the feasibility of this
design process, we provide a highly generic middlewareitactaore (also known as
the “schizophrenic” architecture) and a methodologicadlgto instantiate it.



3.1 From system requirements to a dedicated middleware

Actual middleware has to fulfill the system requirementsngaolutions are based on
standardized “rigid” specifications; this is the case forstT@ORBA implementations
and its many extensions (RT-, FT-, minimum CORBA...). Sugtidieware architec-
tures are targeted to a certain application domain, andlysadd many configuration
parameters to partially control its resource or requestgssing policies.

Yet, implementations are not as efficient as specificallyghesl middleware [KPO5].
The cost to deploy specific features is high due to the API toipdate. Many opti-
mization options cannot be implemented because of thedggeeity of requirements
and the number of (possibly useless) functions to suppesidgs, verification or test-
ing is not addressed and under the control of the middlewaméar. It is a direct con-
sequence of the absence of a “one size fits all" middlewartgtacoture.

Therefore, one should not contemplate middleware as a whotdnstead design
middleware components and the process to combine them &sansbaffordable solu-
tion to system requirements. Thus, it becomes possibleitd the distribution infras-
tructure built for specific requirements.

In the following, we describe the different steps we follame define one such
process built around a highly tailorable middleware asdgtiire, a set of middleware
components.

3.2 Defining a new tailorable middleware architecture

Solutions have been proposed to design tailorable middéevzonfigurablemiddle-
ware defines an architecture centered on a given distribatiadel [SLM98] (e.g. dis-
tributed objects, message passing, etc.); this archieectan be tuned (tasking policy,
etc.).Genericmiddleware [DHTS98] provides a general framework, whictnponents
have to be instantiated to create middleware implememistibhose implementations
are calledpersonalities Generic middleware is not bound to a particular middleware
model; however, various personalities seldom share a &rgrint of code.

Generic functions propose a coarse grain parametrizagaadtion of components).
Configuration is fine grain parametrization (customizatiba component). Verification
is possible through behavioral descriptions (attache@toponents).

Configurable and generic middleware architectures addhestilorability issue,
as they ease middleware adaptation. However, they do neidgrcomplete solutions,
as they are either restricted to a class of distribution madeheir adaptation requires
many implementation levels, thus becomes too expensive.

3.3 Decoupling middleware components

To enhance middleware adaptation at a reduced implememtatist, we proposed
the “schizophrenic middleware architecture” [VHPKO04% #irchitecture separates con-
cerns between distribution models, API, communicationqmals, and theirimplemen-
tations by refining the definition and role of personalities.

The schizophrenic architecture consists of three layapplication and protocol
personalities built aroundrgeutral core. Application interacts with application person-
alities; protocol personalities operate with the network.



Application personalitiesonstitute the adaptation layer between application com-
ponents and middleware through a dedicated API or code gemerhey provide APIs
to interface application components with the core middrewghey interact with the
core layer in order to allow the exchange of requests betwagties. Application per-
sonalities can either support specifications such as COR®AJava Message Service
(JMS), etc. or dedicated API for specific needs.

Protocol personalitiehandle the mapping of personality-neutral requests (repre
senting interactions between application entities) orgssages exchanged using a cho-
sen communication network and protocol. Protocol perstestan instantiate middle-
ware protocols such as IIOP (for CORBA), SOAP (for Web Ses)cetc.

The neutral core layeacts as an adaptation layer between application and ptiotoco
personalities. It manages execution resources and pothdaecessary abstractions to
transparently pass requests between protocol and apptigarsonalities in a neutral
way. It is completely independent from both application pmatocol personalities.

The neutral core layer enables the selection of any coribimat application and/or
protocol personalities. Several personalities can b@caled and cooperate in a given
middleware instance, leading to its “schizophrenic” natur

3.4 PolyORB, a schizophrenic middleware

In [VHPKO4], we present PolyORB our implementation of a goipihrenic middleware.
PolyORB a free software middleware supported by Ada&drelyORB’s research
activities are hosted by the ObjectWeb consorfium

We assessed its suitability as a middleware platform to atiggeneral specifica-
tions (CORBA, DDS, Ada Distributed Systems Annex, Web Apgtions, Ada Mes-
saging Service close to Sun’s JMS) as well as profiled pelisiesg RT-CORBA, FT-
CORBA) and as a COTS for industry projects.

In the remainder of this section, we provide a review of thg &ements of Po-
lyORB'’s architecture, implementation, and its capalafitio address middleware tai-
lorability and verification.

3.5 A Canonical Middleware Architecture

Our experiments show that a reduced set of services caniloese@rious distribution
models. We identify seven steps in the processing of a régeessh of which is defined
as one fundamental service. Services are generic compofoenthich a basic imple-
mentation is provided. Alternate implementation may bedusematch more precise
semantics. Such an implementation may also come with itawetiral description for
verification purposes. Each middleware instance is onereahassembling of these en-
tities. ThepBroker component coordinates the services : it is resptafbthe correct
propagation of the request in the middleware instance.r€igullustrates the coopera-
tion between PolyORB services.

Shttp:// ww. adacore. com
4http://pol yorb. obj ect web. or g



Request propagation

Fig. 1. Request propagation in the schizophrenic middleware architecture

First, the client looks up server’s reference usingdbdressingservice (1), a dic-
tionary. Then, it uses thieinding factory (2) to establish a connection with the server,
using one communication channels (e.g. sockets, prottack)s

Request parameters are mapped onto a representatiorestotaibansmission over
network, using theepresentatiorservice (3), this is a mathematical mapping that con-
vert a data into a byte stream (e.g. CORBA CDR).

A protocol (4) supports transmissions between the two nodes, thrcwagtians-
port (5) service; it establishes a communication channel bettlee two nodes. Both
can be reduced tbinite-state automatalhen the request is sent through the network
and unmarshalled by the server.

Upon the reception of a request, the middleware instancerenghat a concrete
entity is available to execute the request, usingabiivationservice (6). Finally, the
executiorservice (7) assigns execution resources to process thesiedinese services
rely on thefactoryandresource managemepatterns.

Hence, services in our middleware architectureppes and filtersthey compute
a value and pass it to another component. Our experimertisReiiyORB showed all
implementations follow the same semantics, they are onfptd to match precise
specifications. They can be reduced to well-known abstrasti

The pBroker handles the coordination of these services: it atls resources and
ensures the propagation of data through middleware. Bgside the only component
that controls the whole middleware: it manipulates crltiesources such as tasks and
I/Os or global locks. It holds middleware behavioral prajes:

Hence, the schizophrenic middleware architecture prevele€omprehensive de-
scription of middleware. This architecture separates afsgeneric services dedicated
to request processing from thB8roker.

3.6 pBroker: core of the schizophrenic architecture

The pBroker component is the core of the PolyORB middleware. # isfinement of
the Broker architectural pattern defined in [BM®6]. The Broker pattern defines the
architecture of a middleware, describing all elements frmatocol stack to request
processing and servant registration.

The pBroker relies on a narrower view of middleware internalg [iBroker coop-
erates with other middleware services to achieve requesepsing. It interacts with
theaddressingandbinding services to route the request. It receives incoming reguest



from remote nodes through th@nsportservice;activationandexecutiorservices en-
sure request completion.

Hence, thaiBrokermanages resources and coordinates middleware services to e
able communication between nodes and the processing ahingarequestsSpecific
middleware functions are delegated to the seven servicgsasented in previous sec-
tion. ThepBroker is the dispatcher of our middleware architecture.

Several “strategies” have been defined to create and usdewa® resources: in
[PSCSO01], the authors present different request proaggsificies implemented in
TAO; the CARISM project [KP04], allows for the dynamic rediguration of commu-
nication channels. Accordingly, th@roker is configurable and provides a clear design
to enable verification. Figure 2 describes the basic elesrafrthepBroker.

Broker Core
«interfaces Broker Contraller
Broker Core Tasking Policy
sinterfacex «interface» sinterface»
Asynch_Ev Checking | | RegisteredTasks Policy 7| BrokerScheduler
interfaces
Request_Scheduler |

Fig. 2. Overview of thepyBroker

ThepuBroker Core APhandles interactions with other middleware services.

The pBroker Tasking Policyontrols task creation in response to specific events
within the middleware, e.g. new connection, incoming ressie

The pBroker Controllermanages the state automaton associated tqmBneker.
It grants access to middleware internals (tasks, I/O andieg)eand schedules tasks
to process requests or run functions in fiigroker Core Several policies control it:
the Asynchronous Event Checkipglicy sets up the polling and data read strategies
to retrieve events from 1/O sources; tBeoker Scheduleschedules tasks to process
middleware jobs (polling, processing an event on a sour@request). Th&equest
Schedulercontrols the specific scheduling of requests;lthae Rootontrols request
queueing; thé&kequest Schedulepntrols thread dispatching to execute requests.

These elements are defined by their interface and a commbHregl behavioral
contract. They may have multiple instances, each of whifiheg their behavior, al-
lowing for fine tuning. We implemented several instancesheke policies to support
well-known synchronization patterns.



The schizophrenic middleware architecture proposes ongezhensive view of
one middleware architecture. This architecture is definedral a set of canonical com-
ponents, one per key middleware’s function, andBeoker component that coordinate
and allocates resources to actually execute them.

This allows for an iterative process to build new distribatifeature and support
new models: one can build new services and bind them tpBeker. These services
form the root of the distribution feature, exported to thentbrough dedicated API or
code generator. We detail the later in the next section.

3.7 A methodology to design new personalities

A methodological guide details the different steps to inséde PolyORB (figure 3)
from a specific set of application requirements and the iedpdiistribution model (step
1). It is intended to give the user the proper knowledge tort&tolyORB. There are
several ways to adapt PolyORB to the application requirésn@tep 2):

— Use an existing personality. PolyORB already comes with BARRT-CORBA,
DSA, MOMA (Ada-like JMS), DDS and the existing configuratiparameters;

— Design a new personality: design or refine some of the fundeaheomponents,
by re-using fundamental components already developeddsasting personalities
or from the neutral core; overloading them or designing narewt of fundamental
components from scratch.

Note that when a new personality is designed, we get bacletgeheric architec-
ture (step 3) to decide whether the new features would beiufsgfother person-
alities. In this case, there are two possible policies:

— This feature has a simple and generic enough implementdt@ican be reused by
other personalities, then the feature is integrated in tia pf neutral core layer
components, e.g. concurrency policies, low-level trarspo

— This feature is intrinsically specific to a personality, theolementation enhance-
ment is kept at the level of the protocol or application peaities, e.g. GIOP
message management, DDS specific API.

Finally the user derives one assembly of components: thetdimed middleware
adapted to its initial needs (step 4).

This procedure may also be repeated to adapt more prec@®iyanents, allowing
for evolving design of some core elements without impedivegwhole assembly.

In this section, we have defined the middleware archite@ndeassociated method-
ology used to implement middleware. We enforce a strongraépa of concerns be-
tween the different functions involved in the middlewarel are combine them to form
the required implementation. Such a process proved itseftig when implementing
DDS on top of PolyORB [HKPO6].

3.8 Formal verification

In this section, we discuss the formal techniques used toeirtbd uBroker, and then
verify some of its expected properties using model-chegkin
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Fig. 3. Designing new personalities

Modeling one middleware configuration We propose to use formal methods to model
and then verify our system. We selectfll-formed colored Petri nef&CDFH91] as
an input language for model checking. They are high-levéli Rets, in which tokens
are typed data holders. This allows for a concise and parangefinition of a system,
while preserving its semantics. Using these methods, waocanmodel our architec-
ture using Petri nets as a language for system modeling aifct&gon (figure 4).

2. Assembling a configuration 3. Evalutating one configurz

1. Models library

.

A
Communication
places

Fig. 4. Steps of theiBroker modeling

Step 1:we build one Petri net for each middleware components vanaPetri net
transitions represent atomic actions; Petri net placesiner middleware states or
resources. Common places between different modules dafgractions between Petri
nets modules, they act akannel place§Sou89].

Step 2:for one configuration of th@Broker, some Petri net modules are selected
to produce the complete model. Communications placesiigedtin black) represent
links to otheruBroker functions or to middleware services.

Step 3the selected modules are merged to produce a global modsgdrésents one
middleware configuration. This model and one initial magkenable the verification
of the middleware properties.



Then, middleware functions can be separately verified aad tombined to form
the complete Petri net model. Many models can be assemheddrcommon library
of models. Thus, we can test for specific conditions (padieied settings).

The initial marking of the Petri Net defines available resesr(e.g. threads, 1/0s);
or sets up internal counters. Its state space covers allgp@ssterleaving of atomic
actions; thus all possible execution orders are tested.

pBroker configurations and models In this section, we review the key parameters
that characterize thgBroker, and some of the properties one might expect from auch
component.

ThepBroker is defined by the set of policies and the resource&#.Ughese settings
are common to a large class of applications. We consider odéleware instance, in
server mode, that processes all incoming requests. We studgonfigurations of the
pBroker:Mono-Taskingone main environment task) aMlilti-Tasking(multiple tasks,
using the Leader/Followers policy described in [PSCSO1ik latter allows for parallel
request processing.

We assume that middleware resources are pre-allocatedinvg@er a static pool of
threads; a bounded number of 1/0O sources and one pre-atboamory pool to store
requests. This hypothesis is acceptable: it correspontypitcal engineering practices
in the context of critical systems. Our implementations Hrelcorresponding models
are controlled by three parameters:

Snaxis the upper bound of I/O Sources listening for incoming data

Tmax is the number of Threads available within the middleware;

Bsize IS the size of the Buffer allocated to read data from 1/O sesirc

SnaxandTmax define a workload profile for the middleware no@g;;e defines con-
straints on the memory allocated by th8roker to process requests. These parameters
control middleware throughput and execution correctness.

We list three essential properties of our component. Thesesent basic key prop-
erties our component must verify to fulfill its role.

P1, no deadlockhe system process all incoming requests;

P2, consistencyhere is no buffer overflow;

P3, fairnessevery event on a source is detected and processed.

P1, P3 are difficult to verify only through the execution of somstteases: one has
to examine all possible execution orders. This may not barddible or even possible
due to threads and requests interleaving. Besides, thaiatedimensioning of static
resources to ensure consisteneg)is a strong requirement for DRE systems, yet it is
a hard problem for open systems such as middleware. Thusiopese to verify them
for some configuration of thgBroker: each property is expressed as a LTL formula,
then verified by model-checker tools.

Achieving formal analysis One known limit to the use of Petri Nets as model checker
is the combinatorial explosion when exploring the systestése space.

We tackle this issue using recent works carried out at théLBY detecting of
the symmetries of a system [TMDMO3], and exploiting the syetmas allowed by a
property [BHIO4]. In most favorable cases, these methogigire exponentially smaller



memory space than traditional method based on full enuinara@nd thus more amenable
to computations within reasonable delays.

Thus, we claim that the analysis of PolyORB could not havenlpszformed with-
out the use of model checking because of the large numbeatekstAs an illustration,
even for common middleware configurations (up to 17 threthsyystem presents over
6.56 x 107 states, but we could compute and evaluate its propertidssomodel using
advanced tools.

This verification experience is a proof of feasibility. Nemols are a prerequisite to
ease the structuring, and production of a formal specitinaif a middleware dedicated
to application requirements. Such a specification wouldbleniaoth the verification and
the code generation the corresponding implementation

In the following, we illustrate how an architecture defioitilanguage such as the
AADL enables us to define such a process and support tools.

4 A Process to Build Tailorable and Verifiable Middleware

The schizophrenic architecture allows for a fine tailorifithe middleware. It also per-
mits formal verification on a given middleware instance. idey to help the configura-
tion of the middleware, we need a way to capture the apptinateeds and then build
the corresponding middleware. In this section we explainmathodology to design
and build a distributed application with its particular mhielvare, using the AADL.

4.1 Overview of the AADL

A few ADLs explicitly deal with real-time systems. Examplase ROOM [RSRS99]
and AADL [Lew03]. An AADL model can incorporate non-architaral elements:
embedded real-time characteristics of the componentsérae time, memory foot-
print...), behavioral descriptions, etc. Hence it is plolssio use AADL as a backbone
to describe all the aspects of a system.

“AADL” stands for Architecture Analysis & Design Languadeaims at describing
DRE systems [FLV00] by assembling blocks separately d@esloln this section we
describe the AADL and show how it can be used to describe @gifmin components.

The AADL [SAEO04b] allows for the description of both softwaand hardware
parts of a system. It focuses on the definition of clear blot&rfaces, and separates the
implementations from these interfaces. It can be exprassiad graphical and textual
syntaxes; an XML representations is also defined to easathperability between
tools.

An AADL description is made o€omponentsThe AADL standard defines soft-
ware components (data, threads, thread groups, subpregmptresses), execution
platform components (memory, buses, processors, devaeb)hybrid components
(systems). Components model well identified elements o&theal architectureSub-
programsmodel procedures like in C or Ad&hreadsmodel the active part of an appli-
cation (such as POSIX threadByocessesre memory spaces that contain theeads
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Thread groupsare used to create a hierarchy among threBascessorsnodel micro-
processors and a minimal operating system (mainly a scegdulemoriesmodel hard
disks, RAMs, etcBusesmodel all kinds of networks, wires, efdoevicesnodel sensors,
etc. Unlike other componentsystemslo not represent anything concrete; they actually
create building blocks to help structure the description.

Component declarations have to be instantiated into supopents of other com-
ponents in order to model an architecture. At the top-lexedystem contains all the
component instances. Most components can have subcontpprerthat an AADL
description is hierarchical. A complete AADL descriptiomshprovide a top-level sys-
tem that will contain the other components, thus providimg oot of the architecture
tree. The architecture in itself is the instantiation ofteystem.

The interface of a component is calledmponent typet providesfeatures(e.qg.
communication ports). Components communicate one witthendyconnectingheir
features. To a given component type correspond zero oraleugslementations. Each
of them describe the internals of the components: subcoernisnconnections between
those subcomponents, etc. An implementation of a threadsobprogram can specify
call sequenceso other subprograms, thus describing the execution flowisdrarchi-
tecture. Since there can be different implementations dfengcomponent type, it is
possible to select the actual components to put into thataotbre, without having to
change the other components, thus providing a convenignbaph to configure appli-
cations.

The AADL defines the notion gbropertiesthat can be attached to most elements
(components, connections, features, etc.). Propertéeataibutes used to specify con-
straints or characteristics that apply to the elementsetohitecture: clock frequency
of a processor, execution time of a thread, bandwidth of adiusSome standard prop-
erties are defined; but it is possible to define one’s own ptigse

Refining Architectures The AADL syntax allows for great flexibility in the precision
of the descriptions. In the listing 1.1, we describe a predest receives messages
(modeled by an event data port). Such a description is vegyesasince we do not
give any details about the actual structure of the procegsiiew many threads?). Yet
it is perfectly correct regarding the AADL syntax, and pass$ a first outline of the
architecture specification.

dat a nessage
end nessage;

process receiver_process
features

msg : in event data port nessage;
end receiver_process;

Listing 1.1. Simple example of an AADL description

We can refine the architecture by providing an implementaticthe process. Here
we choose a very simple implementation, with one singleaithtbat calls the user ap-
plication (listing 1.2). We use an AADL standard propertyridicate that the thread is
dispatched aperiodically. The thread is to be executed tiporeception of a message.
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We could also define other implementations, with severaatis to process the
incoming messages or perform other tasks. This facilititesefinement of a given
architecture: We can start by defining the outline of the iéecture (listing 1.1), and
then create implementations of the components (listiny 1.2

process i npl enment ati on receiver_process.inplem
subconponent s

thrl : thread receiver_thread.inplem
connecti ons

connectl : event data port nsg -> thrl. nsg;
end receiver_process. inplem

t hread receiver_thread
features
msg . in event data port nessage;
properties
di spat ch_prot ocol => aperi odi c;
end receiver _thread,

thread i npl enentati on receiver_thread.inplem
calls

{user_app : subprogram application};
connecti ons

par anet er nmsg -> user_app. nMsg;
end receiver_thread.inplem

subpr ogram appl i cation
features

msg : in paraneter nmessage;
end application;

Listing 1.2. Implementation of the process

Our model is partial and does not include any hardware comtowe do not spec-
ify on what processor the process is running, etc. Suchrimdtion should be provided
when designing the complete architecture: the process¢séimd messages, the pro-
cessors, associated memories and potential buses if treeseeeral processors. The
model is precise enough for the scope of this paper, thougthel following sections,
we focus on the receiver thread.

4.2 Overview of the Methodology

Given its ability to describe both software and hardware ponents, the AADL per-
fectly fits our needs. We can use it to completely describiliged architectures and
capture all the necessary parameters. In addition, it leaslility to support a step-
by-step design process based on the refinement of archigedthus it allows for a
progressive approach in the architecture modeling.

The figure 5 illustrates our approach to design the middlewafe use the AADL
to describe the application. From the application desoriptwe can deduce the re-
quired parameters for the middleware (scheduling polieyadypes, etc.) and extract
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Fig. 5. Application generation based on the AADL

an adequate configuration; it is then possible to create ablAdescription of the un-
derlying middleware. We can then generate formal desongtiom the AADL model
and perform model checking. Once verifications have bedomeed, we can generate
the code for the application and the middleware.

4.3 Modeling the middleware architecture using the AADL

The schizophrenic architecture provides a clear strudtuieeate tailorable middle-
ware. A notation such as the AADL syntax can be used to deseribchizophrenic
middleware instance, in order to rapidly configure and depldailored middleware
that meets the application requirements.

Architectural description of the middleware components Middleware is the lower

part of an application; it can be viewed as a software compio(m a set of soft-

ware components) on which the user application relies.Gigemodular structure, the
schizophrenic architecture shall be modeled by a set of A&Abitware components.

Overall design Middleware is a part of the application. Hence a middlewachigec-
ture shall be described using software components: a sefprogramsalled by one
or morethreads(depending on the middleware configuratictigtacomponents model
the data structures exchanged between the subprograms.

The subprograms should be organized so that they reflecetlem £anonical ser-
vices and th@Broker of the schizophrenic architecture.

Subprograms cannot be subcomponents of a system, sincddheyt model “au-
tonomous” components. Hence the schizophrenic archieeciannot be represented
as a set of systems. Consequently, the description is todaiaed as a collection
of packages containing subprograms and data; the packhgeklseflect the logical
organization of the architecture.

Basically, the model should then have seven packages norgahe subprograms
associated with the seven basic services; the componetite pBroker, which con-
stitutes the middleware “heart”, should also be materalias a package. Finally, the



different subprograms and data modeling the personattiesild be defined into sep-
arate packages. Other “tools”, such as socket managerls, lbeulefined into separate
packages.

Each service can actually be modeled as a few main subprsdtshare called
from other parts of the architecture. Such subprograms Bballaced into the public
sections of the packages, while more internal subprogrdmals Ise defined into the
private part.

Middleware configuration The middleware configuration is either given by its archi-
tectural description, or by some properties associateietcdmponents.

The personalities to use for a given configuration are nalieed by the actual
packages and components used to describe the architeCheeactual number of
threads to use is set by describing them in the architecture.

Some configuration elements such as the tasking policy digaltie behavioral
description of the system, not its architecture; yet it isgible to specify them within
theuBroker, using user-defined properties.

The configuration of some services can be specified by proyidiparticular com-
ponent implementation. For example, the activation sergan either be a mere list as-
sociating references to procedures, or or more evolved amesim with priorities, like
CORBA's POA. Those two possibilities correspond to twoetiént implementations of
the same subprogram type.

4.4 Using AADL to verify the middleware

We now explain how to convert the AADL description into a Pa&t and in source
code; we show how to integrate existing behavioral desoriptassociated with AADL
components into the generated Petri net.

Using the AADL to support the construction of verifiable sysems The AADL in
itself only focuses on the description of the system archites. Hence, unlike the
UML, it does not aim at providing a complete and integratdad§syntaxes to describe
all aspects of a model. Instead, the AADL facilitates thegnation of other description
paradigms within the architectural description, the tattee providing containers for
the former ones. This allows for the reuse of “legacy” pagadi instead of imposing a
specific syntax.

The integration of third-party languages within the AADLdsne through proper-
ties or annexes. We privilege the use of AADL propertiesesihéacilitates the use of a
repository of behavioral descriptions that can be refezdrxy the AADL components.
This allows for a clear separation between the architecaunébehavioral descriptions.

Mappings must be defined in order to describe how to mergevimhhdescription
into the AADL elements. The AADL standard defines mappings&da and C lan-
guages [SAEO4a]. Translations have also been defined betwe@ADL error model
and Petri nets [RKKO06], thus allowing the use of existingfieattion and dependability
evaluation tools.
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Fig. 6. Principle of an architecture-driven mapping for the AADL

Our approach focuses on the integration of behavioral ge&ors within AADL ar-
chitectures. Thus, behavioral implementations are ctettdy the runtime built from
AADL descriptions, which helps ensure the consistency betwAADL model and re-
sulting application. The figure 6 illustrates the princgptef our mappings: behavioral
descriptions (in white) are encapsulated by a runtime geedrfrom the AADL de-
scription (in grey). We now give an overview of a mapping fré#DL constructions
to Petri nets and Ada.

Mapping AADL constructions to Petri Nets and source codeWe aim at using the
AADL to coordinate formal verification and code generatibmdo so, we defined rules
to produce a Petri net or Ada code from AADL descriptions.ndgshese mappings we
can generate a complete Petri net from the assembly of AADhpoments, each of
them characterized by its own Petri net (such the nets destin section 3.8); once
we ensure the architectural constructions are valid, wegearerate the correspond-
ing source code. This allows to perform verification on thelghsystem before code
generation.

The AADL elements to map into Petri nets are the software @mapts. Indeed,
execution platform components are used to model the de@ot/of the software com-
ponents; such deployment information is not to in the scdpetii nets. AADL threads
and AADL subprograms are the most important componentsedimey describe the
actual execution flows in the architecture. AADL processes systems are actually
boxes containing threads or other components, and do neiderany “active” seman-
tics; data components are not active components either.

The mapping for source code takes the same components ichorac However,
some components, such as AADL threads and processes,aepifes AADL runtime.
Thus they do not exactly correspond to code generationaghiéguration of the AADL
runtime is set from the information provided by these congmis. The table 1 lists the
main rules of the mappings.

The Petri net mapping mainly consists of translating the AAdXxecution flows.
Components that do not have any subcomponents nor call seegiare modeled by a
transition that consumes inputs and produces outputs. Goemp features are modeled
by places.



AADL corresponding Petri net corresponding Ada code

ot e not translated in Petri nets  wpe data_typeis nui record;

control_entry INput_1 inpyt 2
procedure a_subprogram
subprogram a_subprogram O O (input_1 :in data_type;
features input_2 :in data_type;
!nput_l sin parameter; component_operation output : out data type)
input_2 :in parameter; is

output : out parameter; begin
enda_subprogram; null ;
Q end;
control_exit output

input_1  ippyut_2

processa_process
features
input_1 :in data port data_type;
input_2 : in data port data_type;
output : out data port data_type;
enda_process;

N

omponent_operation correspond to a middleware instance

A

output

Q output

V>
connection : %:, connection handled by the middleware
<>

data port output —> input;

input

( ﬁ" subprogram
<v>

<v2>

<>
(b‘ output —— procedure subprogram_a (output: out data_type);
connection : —— procedure subprogram_b (input: in data_type);
connect :parameter output —> input; Output_var  <cv> X subprogram_a (connect);
connection subprogram_b (connect);

<cyv>

é input

Table 1. Main patterns of the mapping between the AADL Petri nets and source code

We model a place per feature. This systematic approach helpger identify the
translation between AADL models and corresponding Petsd.rie addition, it facili-
tates the expansions of the feature places. For example,igre want to describe the
gueue protocols defined by the AADL properties: in this casemsuld replace each
place by Petri nets modeling FIFOs or whatever type of queapeécified by the AADL
properties.

Connections between features are modeled by transitioadistinguish connec-
tions between subprograms parameters and between othpooent ports.

Tokens stored in input features are to be consumed by companeonnection
transitions; tokens produced by component or connectarsitions are stored in output
features. Components that have subcomponents are mogeieeting the component
transition with the subcomponent nets.

If an AADL port is connected to several other ports at a tirhe,Retri net transition
shall be connected to all the corresponding places: a tolkiéheavsent to each target
place, thus modeling the fact that each destination poeives the output of the initial
port.

Call sequences are made of subprograms that are conne@eade/én extra token
to model the execution control. There is a single executgrirol token in each thread



or subprogram, thus reflecting the fact that there is no awaoay in call sequences,
and in threads and subprograms in general.

Itis important to note that this mapping only provides a sohuto transform AADL
construction into Petri nets. Therefore it cannot produoeueate description of the
behaviors of the components, since it is out of the scopesdAkDL. Proper behavioral
description is achieved by inserting existing Petri nets the framework generated
from the AADL description. It consists of merging the deptions of the components
and the net generated, thus merging the transitions ané9lafcthe AADL threads
and subprograms with the ones contained in the behaviotdl . The Petri net
descriptions that corresponds to the behaviors of the AADhmonents should be set
using AADL properties.

Defining a mapping between AADL constructions and Petri atsvs to perform
verification on the structure of the architecture. Yet, inandatory to ensure the actual
source code of the system will conform to the Petri net. Thiplies that the map-
ping between AADL and programming languages must be camistith the Petri net
mapping.

To ensure this consistency, the mapping we provide for gocodle relies on the
same principles as for Petri nets [VZ06]. We only only giveeapborief and incomplete
overview of itin table 1. The source code mapping is basi@ttanslation between the
AADL subprogram constructions and Ada. Using both mapping®njunction ensure
that the Petri net used for the model checking of the AADL #eclure effectively
reflects the actual source code implementation of the actite.

4.5 Using AADL to generate the middleware

We showed how the AADL and the definition of mappings from AA@Lformal no-
tations allow us to define a prototyping-based process of By®Eem conception.

The initial AADL description can then be refined, accordinghe feedback pro-
vided by the model checking performed on the Petri nets. @medehavior has been
validated, we can generate the corresponding source cadéeam perform tests on the
actual system. The AADL architecture can again be refinezhraing to the results of
the tests.

In order to validate our approach, we created a complete AAdell suite, Oca-
rina [VZ06], which can be used as a compiler for the AADL. Asugpgort tool for
verifying AADL model, Ocarina can take AADL descriptions aput and perform
various operations, such as the expansion of architeat@sdriptions or the genera-
tion of Petri net description as well as compilable souradecdt can also be integrated
within other applications to provide AADL functionalities

The code generator of Ocarina can produce Petri net modstsibled in PetriScript [HRY].
PetriScript is a text language that facilitates the desorpof Petri nets and allows to
automate building operations, such as fusion of placesositions, etc.

Ocarina can generate Ada source code that can be run by andestf PolyORB.
It also generates a tailored application personality amdigores PolyORB to embed
all the required features. We use PolyORB as an AADL runtimaows one to build
distributed applications defined as an AADL model.



Hence, Ocarina helps us to support the generation of tdilmiddleware, as illus-
trated on figure 5: from the AADL description of a distributsaplication, we can infer
the description of the middleware instances for each agidic node, and then produce
the corresponding Petri net and source code.

5 Conclusions and Perspectives

Although middleware is now a well-established technoldwt tases the development
of distributed applications, many challenges remain opgeliée noted that two key
issues are the tailorability of the middleware to versatpgplication requirements, and
the capability of the middleware to provide full proofs of piroperties. In this paper,
we provided an overview of our ongoing research work on theseaspects.

We first noted that middleware architecture impedes tailitita and verification.
Therefore, we proposed and validated the “schizophreniicidieware architecture.
This architecture is a high-level model of middleware trethgrs key concepts in mid-
dleware, addressing the definition of the key functions &edxay to combine them.

Its genericity allows one to derive specific distributiondets. PolyORB, our im-
plementation demonstrates how this architecture can ledjgder to easily build mid-
dleware. This middleware is now used as a COTS in industr@épts, providing sup-
port for CORBA, DDS and still providing a high level of taikdility.

A methodological guide exists to help this adaptation w@r measures show that
the performance of the adapted middleware are close tdrexistiddleware. Besides,
the adaptation work is greatly reduced by the high-leveloofecreuse.

Finally, the schizophrenic architecture allows formalifiesition techniques. We
illustrated how Petri nets allowed us to provide the firstrfal proofs of the behavioral
properties of our COTS middleware. We consider that The heidare is not a blackbox
that should be discarded from the verification process.

However, this remains a complex task that belongs to midatlever verification
expert domains. Then, we noted that tools are required tduzirthese two important
steps in building tailored middleware.

We chose the AADL as a backbone language to help the usergjtscapplica-
tion requirements. Dedicated tools are applied to the mtwlél verify it is correct,
2/ generate the corresponding code and configuration ofugigost middleware. This
provides a first step towards the definition of a “middlewaetdry” that would enable
application designers to instantiate the middleware ttutyadly need. This would re-
duce complexity in the design of distributed applicatioggémoving the complexity
in configuring and using middleware APIs.

Future work will complete and evaluate the benefits of sudiidieivare factory as
a supporting process to build specific middleware configomedbr DRE systems.
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