
Rapid Development Methodology for Customized Middleware

Thomas VERGNAUD, Jérôme HUGUES, Laurent PAUTET

GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

thomas.vergnaud@enst.fr, jerome.hugues@enst.fr, laurent.pautet@enst.fr

Fabrice KORDON

Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/SRC
4, place Jussieu, F-75252 Paris CEDEX 05, France

fabrice.kordon@lip6.fr

Abstract

Developing middleware for distributed application is a
difficult challenge. Such software should be verifiable in
order to help ensure its reliability; it also has to be con-
figurable so that it can be tailored to the specific require-
ments of the target system. So there is a strong need for
methodologies to manage numerous versions of such soft-
ware. In this paper, we show the interest of architecture de-
scription languages (ADL) as a support for a development
based on a prototyping process. We present our approach,
which combines the Architecture Analysis & Design Lan-
guage (AADL) and the schizophrenic middleware architec-
ture, and show how those technologies can be used to design
and configure verified middleware.

1 Introduction

Design and implementation of distributed applications
rely more and more on middleware. As the middleware
becomes a key component in such applications, there is a
strong requirement to improve both performance and relia-
bility.

The best way to achieve these performance and reliabil-
ity objectives is to build a specifically designed middleware
for each application. A general purpose middleware would
drag numerous components that are not needed to perform
the specific functions of a given application. Conversely, a
dedicated middleware would only embed the useful mech-
anisms and components. However, it is impossible for cost
and maintenance reasons to maintain one middleware per
application.

Some projects such as Jonathan [1], TAO [3], or Quar-
terware [12] propose a partial solution to the problem by

offering an approach to build a tailored middleware. These
solutions rely on a well designed architecture that can be
mapped onto several implementations. However, the archi-
tecture is built on top of complex design patterns, making
it difficult to achieve reliability requirements and to detect
useless components at a fine-grain level.

Figure 1 illustrates the new issues for middleware engi-
neering. Once the middleware architecture is defined, engi-
neers provide an implementation of the original middleware
(step 1 in the figure). However, implementing the distribu-
tion mechanisms requires a very deep expertise in middle-
ware engineering. Once this step is manually completed,
there may be some glitches between the proposed architec-
ture and the resulting implementation.a r c h i t e c t u r e o r i g i n a lm i d d l e w a r e c o n f i g 1c o n f i g 21 2

Figure 1. Steps to build middleware.

Then, to address the application requirements, a config-
ured middleware may be derived from the original middle-
ware (step 2 in the figure). Configurations may be main-
tained at the source level but components of the middleware
are then selected using implementation criteria. This is not
easy when application designers (and not the middleware
designers) have to select a configuration. Moreover, there
may be conflicts between configurations that are difficult to
handle in the main source repository. So, when the middle-
ware is tailored, the risk in having several source reposito-
ries reflecting different strategies is high. Reconciliation of
these repositories is a very complex task.

This contradiction between the need to unify and the

1



need to tailor middleware is often called themiddleware
crisis. This problem is a new key issue in middleware en-
gineering since it prevents the use of middleware in appli-
cation domains having strong implementation constraints
such as memory footprints or performance execution.

The MDA (Model Driven Architecture) approach intro-
duced by OMG [8] clearly suggests that most of the design
should be performed at the model level. For middleware,
we think that proposed solutions lack a notation to capture
the architecture. Moreover, the use of a central model to de-
scribe the architecture requires the definition of a method-
ology. The objective is to reduce uncertainty generated by
steps 1 and 2 in Figure 1 by using code generators.

Our paper presents a proposal for an integrated method-
ology to build domain specific middleware using a prototyp-
ing approach. The main idea is to replace traditional design
and implementation techniques by an assisted one produc-
ing a specific middleware configuration from a set of data
(model, components, implementation policies, etc.). We
aim at easing the production of a specific configuration (tai-
lored middleware) dedicated to the target application and
embedding required services only. Thus, test and verifica-
tion of the middleware only concerns appropriate code.

This paper is structured as follows. Section 2 shows the
overall prototyping methodology. Then we present in sec-
tion 3 theschizophrenic architecturethat is a good candi-
date to support our methodology. The use of an architec-
ture description language (ADL) is necessary; we selected
AADL [10], presented in section 4. Section 5 is dedicated
to the way automatic code generation is achieved to support
our methodology.

2 Prototyping approach

The prototyping approach consists of a step-by-step pro-
cess that allows periodic validatation of the project. Early
problem identification during this process provides substan-
tial cost savings.

2.1 Applying prototyping to middleware design

Our work aims at designinga tailored middlewarefor a
specific system. A classical approach is to rely on a general
architecture. This architecture is then adapted to the specific
requirements of the system.

Middleware is often developed separately and verified by
performing tests on the final version. However, performing
verification on a middleware configuration is very difficult,
since it is very versatile and has many execution cases.

In our approach, we use a prototyping methodology rely-
ing on code generation to help in the management of many
variations (configurations) of a middleware.

2.2 Principles of prototyping

Prototypes are developed to verify some properties of the
real system. They can be developed all over the project, in
order to validate some concepts or to study particular prop-
erties that are expected from the final system. Prototypes
can focus on a particular aspect of the problem or provide
all the functionalities of the final product. As development
goes on, prototypes are getting closer to the final system.

Under the word “prototyping” lie two different notions,
corresponding to two different uses of the prototypes [4].

The first approach is called “throw-away”. It consists of
creating prototypes in order to validate a concept, prior to
implementing the real system. The throw-away approach
is rarely used during the actual development: throw-away
prototypes are not reused, the only feedback is a refinement
of requirements.

model (prototype)

generated system

fe
ed

ba
ck

re
fin

em
en

t

Figure 2. Evolutionary prototyping

The second approach is called “evolutionary”. Unlike
the previous one, prototypes tend to become the final prod-
uct. Thus, a prototype is a preview of the final system. Pro-
totypes are refined to create more accurate ones. The last
prototype actually corresponds to the final system.

Our methodology consists of starting from a general
middleware architecture. This architecture is the first pro-
totype of the final middleware implementation. We then
perform evolutionary prototyping to adapt and specialize it.
Prototypes are models; actual middleware implementations
are generated from those models, as shown in figure 2. All
the configuration elements should be placed in the model to
ease system maintenance.

In order to achieve our development methodology, we
have to first define a very versatile middleware architecture
to potentially match a large panel of system requirements.
This architecture must be formally described. All the con-
figuration elements must be part of the description; this way
we can use the model as a prototype and refine it. When the
model fulfils all the required properties, we can generate an
executable middleware implementation.

3 The schizophrenic architecture

Actual middleware has to fulfil the system requirements.
Some solutions are based on “rigid” specifications; this is



network
protocol personalities

neutral layer

application personalities

application

Figure 3. Outline of the schizophrenic archi-
tecture

the case for most CORBA implementations. Such middle-
ware architectures are targeted to a certain application do-
main. They can be adapted to other fields of application
(RT-CORBA, minimum CORBA. . . ); yet, implementations
are not as efficient as specifically designed middleware [5].

Thus, there is a need for middleware that can really fit
many different systems. To do so, both a tailorable and ver-
ifiable architecture is required.

3.1 The need for a tailorable architecture

Solutions have been proposed to design tailorable mid-
dleware. Configurablemiddleware defines an architecture
centered on a given distribution model [11] (e.g. distributed
objects, message passing, etc.); this architecture can be
tuned (tasking policy, etc.).Genericmiddleware [1] pro-
vides a canonical architecture, which has to be instantiated
to create middleware implementations. Those implemen-
tations are calledpersonalities. Generic middleware is not
bound to a particular middleware model; however, various
personalities seldom share a large amount of code.

Configurable and generic middleware architectures ad-
dress the tailorability issue, as they ease middleware adap-
tation. However, they do not provide complete solutions, as
they are either restricted to a class of distribution model,or
their adaptations are too expensive.

3.2 Decoupling middleware functionalities

As an attempt to address those issues, we proposed the
schizophrenic middleware architecture [14]. It separates
concerns between distribution model APIs, communication
protocols, and their implementations. Schizophrenic mid-
dleware refines the definition and role of personalities.

The schizophrenic architecture consists of three layers
(as represented in figure 3):application-levelandprotocol-
level personalities around aneutral core. The user appli-
cation relies on the application personalities; the protocol
personalities operate with the network.

Application personalitiesconstitute the adaptation layer
between application components and middleware through a

dedicated API or code generator. They provide APIs to in-
terface application components with the core middleware;
they interact with the core layer in order to allow the ex-
change of requests between entities.

On the client side, they map requests made by client
components from their personality-specific representation
to a personality-independentone. Then they invoke the neu-
tral layer, passing the neutral request. Results are translated
back from neutral to personality-specific form.

On the server side, they receive requests for local objects
from the core middleware, assign them to actual application
components for evaluation, and return results.

Application personalities can instantiate middleware im-
plementations such as CORBA, the Distributed System An-
nex of Ada 95 (DSA), the Java Message Service (JMS), etc.

Protocol personalities handle the mapping of
personality-neutral requests (representing interactions
between application entities) onto messages exchanged
using a chosen communication network and protocol.
Protocol personalities can instantiate middleware protocols
such as IIOP (for CORBA), SOAP (for Web Services), etc.

The neutral core layeracts as an adaptation layer be-
tween application and protocol personalities. It manages
execution resources and provides the necessary abstractions
to transparently pass requests between protocol and appli-
cation personalities in a neutral way. It is completely in-
dependent from both application and protocol personalities.
This enables the selection of any combination of application
and/or protocol personalities.

Several personalities can be collocated and cooperate
in a given middleware instance. This is why we call it
“schizophrenic” middleware.

3.3 The middleware core architecture

The middleware core provides neutral, model-
independent functionalities. It requires a flexible im-
plementation and the identification of the functionalities
involved in request processing to ease the prototyping of
new personalities and their interactions.

Figure 3.3 illustrates the architecture of the neutral layer.

The inner heart of the neutral layer is embodied by a
component named “µBroker” [2]. The µBroker provides
all the basic middleware mechanisms: I/O, task schedul-
ing, etc. It is formally described, to support verification
facilities. Hence it is possible to ensure its properties (no
deadlock, no livelock, etc.).

The personalities do not directly interact with the
µBroker. They are built on top of seven fundamental ser-
vices that provide the client-server interactions found in
most distribution models. Those services define the canon-
ical operations performed in a middleware implementation.



µ-broker
addressing activation

binding

appli. perso.

execution

application

proto. perso.

protocol
transport

represent.

Figure 4. The core architecture

For example, upon the reception of a request on a server
node, theactivationservice ensures the server entity exists
in the application. Theexecutionservice is then invoked to
actually process the request.

The composition of these fundamental services around
theµBroker allows for the implementation of different dis-
tribution models.

3.4 Assessment

The seven fundamental services provide the basic mid-
dleware operations. TheµBroker can be formally described
to provide verification facilities, to ensure real-time proper-
ties. Those elements can be configured to create a middle-
ware instance for particular system requirements.

The schizophrenic architecture is versatile enough to in-
stantiate middleware supporting different distribution mod-
els. From an architectural point of view, the neutral core
layer remains unchanged from a configuration to another;
even if its behavior and properties may change.

4 Modeling the middleware architecture us-
ing the AADL

The schizophrenic architecture provides a clear structure
to create tailorable middleware. A notation can be used
to describe a schizophrenic middleware instance, it order
to rapidly configure and deploy a tailored middleware that
meets the application requirements. Architecture descrip-
tion languages [7] provide facilities for such description.

A few ADLs explicitly deal with real-time systems. Ex-
amples are ROOM [9] and AADL [6]. An AADL model
can incorporate non-architectural elements: embedded real-
time characteristics of the components (execution time,
memory footprint. . . ), behavioral descriptions, etc. Hence
it is possible to use AADL as a backbone to describe all the
aspects of a system.

4.1 Overview of AADL

“AADL” stands for Architecture Analysis & Design Lan-
guage. It can be expressed using graphical and textual syn-
taxes; XML and UML representations are also defined.

AADL aims describe Distributed Real-Time Embed-
ded (DRE) systems by assembling blocks separately devel-
oped. Thus it focuses on the definition of clear block in-
terfaces [6], and separates the implementations from those
interfaces. AADL allows for the description of both soft-
ware and hardware parts of a system.

An AADL description is made ofcomponents. The
AADL standard defines software components (data,
threads, subprograms, processes. . . ), execution platform
components (memory, buses, processors. . . ) and hybrid
components (systems).

Components model well identified elements of the ac-
tual system.Subprogramsmodel procedures such as those
in C or Ada. Threadsmodel the active part of an appli-
cation (such as POSIX threads).Processesare memory
spaces that contain thethreads. Processorsmodel micro-
processors and a minimal operating system (mainly a sched-
uler). Memoriesmodel hard disks, RAMs, etc.Busesmodel
all kinds of networks, wires, etc. Unlike other components,
systems do not represent anything concrete; they actually
create building blocks to help structure the description.

Component declarations have to be instantiated into sub-
components of other components in order to model an ar-
chitecture. At the top-level, a system contains all the com-
ponent instances.

Each component has an interface (calledcomponent
type) that providesfeatures(e.g. communication ports).
Components communicate one with another byconnecting
their features.

To a given component type correspond zero or several
implementations. Each of them describe the internals of the
components: subcomponents, connections between those
subcomponents, etc. An implementation of a thread or
a subprogram can specifycall sequencesto other subpro-
grams. This helps describe the whole execution flows in the
architecture.

Most components can have subcomponents, so that an
AADL description is hierarchical.

AADL defines a set of standardpropertiesthat can be
attached to most elements (components, connections, fea-
tures, etc.). Standard properties are used to specify things
such as the clock frequency of a processor, the execution
time of a thread, the bandwidth of a bus, etc. In addition,
it is possible to add user-defined properties, to express spe-
cific description constraints.

By default, all elements of an AADL description are de-
clared in a global namespace. To avoid possible name con-



flicts in the case of a large description, it is possible to gather
components withinpackages.

A packagecan have a public part and a private part; only
the elements of the package can have a visibility on the pri-
vate part. Packagescan containcomponentsdeclarations.
So, they can be used to structure the description from a log-
ical point of view. Unlike systems, they do not impact the
architecture.

4.2 Architectural description of the middleware
components

Middleware is the lower part of an application; it can
be viewed as a software component (or a set of software
components) on which the user application rely. Given its
modular structure, the schizophrenic architecture shall be
modeled by a set of AADL software components.

4.2.1 Overall design

Middleware is a part of the application. Hence a middle-
ware architecture shall be described using software compo-
nents: a set ofsubprogramscalled by one or morethreads
(depending on the middleware configuration);datacompo-
nents model the data structures exchanged between the sub-
programs.

The subprograms should be organized so that they re-
flect the seven canonical services and theµBroker of the
schizophrenic architecture.

Subprograms cannot be subcomponents of a system,
since they do not model “autonomous” components. Hence
the schizophrenic architecture cannot be represented as a
set of systems. Consequently, the description is to be orga-
nized as a collection of packages containing subprograms
and data; the packages should reflect the logical organiza-
tion of the architecture.

Basically, the model should then have seven packages
containing the subprograms associated with the seven ba-
sic services; the components of theµBroker, which consti-
tutes the middleware “heart”, should also be materialized
as a package. Finally, the different subprograms and data
modeling the personalities should be placed into separate
packages. Other “tools”, such as socket managers, could be
placed into separate packages.

Each service can actually be modeled as a few main sub-
programs that are called from other parts of the architecture.
Such subprograms shall be placed into the public sections
of the packages, while more internal subprograms shall be
placed into the private part.

4.2.2 Middleware configuration

The middleware configuration is either given by its archi-
tectural description, or by some properties associated to the

components.

The personalities to use for a given configuration are ma-
terialized by the actual packages and components used to
describe the architecture.

The actual number of threads to use is set by describing
them in the architecture.

Some configuration elements such as the tasking policy
actually deal with the behavioral description of the system,
not its architecture; yet it is possible to specify them within
theµBroker, using user-defined properties.

The actual configuration of some services can be speci-
fied by providing a particular component implementation.
For example, the activation service can either be a mere
list associating references to procedures, or or more evolved
mechanism with priorities, like CORBA’s POA. Those two
possibilities correspond to two different implementations of
the same subprogram type.

Since AADL does not allow dynamic configuration, the
actual implementation of the components may depend on
the middleware configuration.

5 Middleware generation

An AADL model can be a support to check the validity
of a system: the execution time, the required memory, etc.
can be specified for each component, using properties.

It is also possible to generate code from an AADL de-
scription. Hence we can create an executable system from
its architectural description. The AADL model is then used
to describe the components to integrate into the generated
system.

In order to perform those tasks, an AADL model must
provide a description with details enough regarding the
properties of the system, and how it is to be implemented.

5.1 Evolutionary approach

AADL allows for the description of components at var-
ious levels of precision. One can either not specify the im-
plementation of a component (provided that this is not re-
quired for a given processing purpose), or give very few
architectural details of some parts of the description. On
the contrary, one can precisely describe some parts of the
architecture. It depends on what kind of process is intended
for the model. Hence it facilitates an evolutionary approach
in the model design.

We showed in 4.2.2 that some aspects of the architec-
ture directly depend on the middleware configuration. For
a first step, instead of giving all the architecture details,it
would be better to describe some components from a higher
level; for example without giving the implementation of



AADL model code repository

executable system for a
given configuration

code generation

configuration

& selection

re
fin

em
en

t

Figure 5. Middleware configuration & genera-
tion

some components. The exact architectural description can
be described later, when the middleware outline is set.

A preliminary description of an architecture should be
done by designing a collection ofsubprogramsand the main
dataexchanged between thesubprograms. Those compo-
nents should be located inpackages, in order to structure
the description into main modules.

From this point, either we already have the architectural
descriptions of some components we want to reuse, or not.
Having pre-described components means that some parts of
the systems are already fully described.

The overall methodology is summarized in figure 5. The
AADL model for a middleware configuration is to be done
step by step. The first step consists in assembling the com-
ponents corresponding to the required personalities and ser-
vices.

The model is iteratively refined: we can either describe
the complete architecture of some subsystems, and then per-
form code generation or architecture validation in order to
make unitary tests; we can also give a medium-level de-
scription of a part or the total of the global system, so that
analysis can be done on the whole architecture.

The final model should contain all the required config-
uration elements to correctly configure the code templates.
Then the source code is integrated into the structure gener-
ated from the AADL description.

5.2 Bindings with programming languages

In the end of the prototyping process, we obtain a model
that fulfils all the system requirements. We must then gen-
erate an executable middleware implementation that corre-
sponds to the AADL description.

AADL is an architectural language. It does not directly
deal with the actual behavioral description of the compo-
nents. AADL describes how the components interact with
one another, and the data structures. The standard also de-
fines execution templates for the threads. Generating code
from an AADL description only consists of generating the
“glue” between the components.

The standard defines a run-time to support the execution
of the threads, subprograms, etc. It also defines rules to
instantiate an AADL description using a programming lan-
guage such as C or Ada [13].

Threads are handled by state automata provided by the
AADL run-time. They define the thread execution cycle:
initialization, dispatch, error states, etc. The AADL run-
time also defines predeclared ports that are associated to
standard actions (dispatch, job completion, etc.).

The source code describing the behavior of the compo-
nents has to be provided as properties. Thus it can be inte-
grated into the generated glue.

5.3 Achieving the middleware generation

Code generation requires a precise description: all com-
ponent instances (i.e. subcomponents) must be designated
with its implementation in the final model. In order to gen-
erate an executable system, we must have source code asso-
ciated with all the components of the architecture.

To do so, a source code repository is to be associated
with the AADL description. This repository shall contain
two kinds of source codes. Static sources are for com-
ponents implementations with no need for configuration.
This is typically the case for protocol personalities: theyal-
ways provide the same functions. Components, such as the
µBroker, cannot be described by static source code, since
their behavior depends on the middleware configuration.
For such components, the repository must contain template
source codes, that are configured according to the AADL
model (e.g. number of threads that handle requests).

AADL properties are associated with every component
implementation, specifying which part of the repository de-
scribes the component implementation. The source repos-
itory contains code for all available component implemen-
tations. The AADL description is likely to only deal with a
subset of those implementations. For example, all person-
alities will not be included in a given configuration. Some
services may have several possible implementations; only
one will be used.

Building a middleware configuration manually may lead
to including generic code where only a small portion is
actually useful. From the AADL description, the genera-
tion process can include only the required sources from the
repository. This facilitates the testing process since no dead
code should be embedded in the corresponding configura-
tion.

This methodology allows for a strict separation between
the architectural design and the source code implementa-
tions. Thus it helps the maintenance: modifications in the
configuration are made to the model; the generation process
then propagates them to the executable system.



It is also possible to implement the configuration using
different languages: we just have to change the code repos-
itory. The code repository could actually contain behav-
ioral descriptions of the components using formal methods
(e.g. Petri Nets), provided that we can generate source code
from those descriptions. This would facilitate the verifica-
tion process.

6 Conclusion

There is no “one size fits all” middleware. To achieve ef-
ficiency, middleware must match the specific requirements
of a given system (memory size, tasking policy, etc.). For
cost reasons, developing new middleware for each appli-
cation is impossible. Our paper proposes a computer as-
sisted methodology to elaborate customized middleware
from a common basis: PolyORB, a schizophrenic middle-
ware. Our development process ensures adequateness be-
tween the middleware implementation and the system re-
quirements.

We presented the schizophrenic architecture, which syn-
thesizes middleware adaptation techniques into a clear and
modular architecture: personalities are built upon a neutral
layer providing basic middleware operations. The middle-
ware adaptation is performed through configuration of the
neutral layer and personalities implementation.

We then presented AADL as a tool to describe the ar-
chitectural of a complete system. AADL can serve as a
backbone to aggregate the different aspects of a model (ar-
chitectural issues, behavioral descriptions, execution times,
etc.). AADL allows for the description of an architecture
with various levels of details. A model can be described
from a very high point of view; the components can then
be described with more accuracy. This helps to apply an
evolutionary prototyping approach.

In order to generate a middleware implementation, the
AADL model must be associated with a code repository.
This repository contains the source codes corresponding to
the middleware components implementations. The code
generated from AADL is a glue in which programs selected
from the repository are included. The actual middleware
generation consists of two operations: 1) the selection of the
appropriate source code from the repository; 2) its integra-
tion of into the glue generated from the AADL description.

This provides a clear separation between the middleware
architecture and its actual code. It helps include only the
necessary components. It facilitates the middleware analy-
sis and the use of different programming languages, since
this is only related to the source repository; the structure
remains unchanged.

We aim to apply, in the future, this development proce-
dure to formal specification instead of code, as a extension

of the work presented in [2]. This should help in introduc-
ing formal verification for middleware.

References

[1] B. Dumant, F. Horn, F. D. Tran, and J.-B. Stefani. Jonathan:
an open distributed processing environment in java. In
Proceedings of the IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed Process-
ing. Springer-Verlag, 1998.

[2] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir,
and T. Vergnaud. On the Formal Verification of Middleware
Behavioral Properties. InProceedings of the 9th Interna-
tional Workshop on Formal Methods for Industrial Critical
Systems (FMICS’04), september 2004.

[3] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhes,
and R. Campbell. Monitoring, security, and dynamic con-
figuration with the dynamictao reflective orb. InProceed-
ings of the IFIP International Conference on Distributed
Systems Platform and Open Distributed Processing (Mid-
dleware2000)., april 2000.

[4] F. Kordon and Luqi. An introduction to rapid system proto-
typing. In transaction on software engineering, volume 28.
IEEE, september 2002.

[5] F. Kordon and L. Pautet. Towards next generation middle-
ware? Distributed Systems online, february 2005. avail-
able athttp://dsonline.computer.org/portal/site/
dsonline/.

[6] B. Lewis. architecture based model driven software
and system development for real-time embedded sys-
tems, 2003. available athttp://la.sei.cmu.edu/
aadlinfosite/LinkedDocuments/.

[7] N. Medvidovic and R. N. Taylor. A framework for clas-
sifying and comparing architecture description languages.
In Proceedings of the Sixth European Software Engineering
Conference (ESEC/FSE 97). Springer-Verlag, 1997.

[8] OMG. Model Driven Architecture (MDA), Document num-
ber ormsc/2001-07-01. Technical report, OMG, 2001.

[9] B. Rumpe, M. Schoenmakers, A. Radermacher, and
A. Schürr. UML + ROOM as a standard ADL? InProc.
ICECCS’99 Fifth IEEE International Conference on Engi-
neering of Complex Computer Systems, 1999.

[10] SAE. Architecture Analysis & Design Language (AS5506).
available athttp://www.sae.org, september 2004.

[11] D. Schmidt, D. Levine, and S. Mungee. The design and
performance of real-time object request brokers.Computer
Communications, 21, april 1998.

[12] A. Singhai. QuarterWare: A middleware toolkit of soft-
ware RISC components. PhD thesis, University of Illinois
at Urbana-Champaign, 1999.

[13] J. Tokar. Annex D: Language compliance and application
program interface, september 2004. Part of the AADL stan-
dard, available from SAE.

[14] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB:
a schizophrenic middleware to build versatile reliable dis-
tributed applications. InProceedings of the 9th International
Conference on Reliable Software Techologies Ada-Europe
2004 (RST’04), volume LNCS 3063. Springer Verlag, june
2004.


