Model checking of high-level
object oriented specifications: thé P experienceé

Frédéric Gillierst, Francois BréantDenis Poitrenaudt & Fabrice Kordont

t SAGEM SA
Etablissement d’Eraggny, Avenue du Gros Chéne
95610 Eragny
B.P. 51 - 95612 Cergy Pontoise Cedex, France
frederic.gillier@agemcom
«xLaBRI, équipe vérification et test de systemes informqats
Université de Bordeaux 1
Domaine Universitaire, 351, cours de la Libération,
33405 Talence Cedex, FRANCE
francois. breant @i p6. fr
¥ Laboratoire d’Informatique de Paris 6/SRC
Université Pierre & Marie Curie
4, place Jussieu
F-75252 Paris CEDEX 05, France

deni s. poi trenaud@i p6.fr, fabrice.kordon@ip6.fr

1 Introduction

The rapid advance of distributed technology has lead tesysistretching limits in terms of complexity
and manageability [10]. This problem is crucial for reliablistributed systems which are required to have
a deterministic behavior. To solve these development prob] it is of interest to consider development
model based development approach [4].

Such an approach distinguishes two strong components [8]:
e a model on which any type of validation or verification tecfugs may be applied,
e the programs that implement this model and which are gesgfeam it.

Such approaches become widely accepted under various naksesn example, MDA [12] (Model
Driven Architecture) may be considered as a similar apgroac

A distributed application is made of two orthogonal aspetite control aspect, and the computational
aspect. The control aspect manages the global state of flieatjpn whereas the computational aspect
covers the domain specific computational components. MBdsekd development is of particular interest
for distributed systems for two main reasons. First, theyary difficult to develop since they are very
undeterministic ; thus, some apparently minor choices naag dramatic influences on the system behavior.
Second, control aspects (the difficult part to build) stignigteract with both the execution environment
and computational aspects, these interactions have tarbkilta studied to avoid unexpected behaviors.

In that context, formal methods are of particular inter@stes they allow to prove the system using
model checking techniques for example. However, [11] destrated that a major problem for the use of
formal methods is the large education required by engineeuse them. The idea is then to encapsulate
them using "more common” languages for which no particuteul€ss) training is required. As an exam-
ple, a similar approach is used in BLAST citeblast that afldine use of C programs as inputs for model
checking.

We have designeldf P (language for Prototyping) [13], a formal notation dedéchto the specification,
verification and code generation of distributed systelni aims at providing a high level notation that fits

*The work presented in this paper is being performed withivey MORSE project. MORSE is a French government founded
research project (RNTL) with industrial partners (Sagemni®) and academic partners (LIP6 - Univ. P. & M. Curie, LaBRIniv.
Bordeaux).

the needs for describing the control part of a distributexiesy in a way that makes it usable for engineers.
A first experience for verification froraf P specifications is described in [9] and [14]; it is based ontai Pe
net generated from thef P specification for verification purposes.

This paper presenttirect model checkingn LfP specifications; which means that model checking is
performed on thé_fP specification instead of the corresponding Petri net likf9inl4]. The symbolic
model checker presented here is basedbD (Data Decision Diagrams) that are an extension of BDD
for discrete types [3]. We explain how we represent &R state usindDDs and the mechanisms we use
to perform the state exploration. The key issues relatedaddrmal verification of_f P specifications are
related to the dynamic aspects of this language such asgs@xereation, RPC mechanisms, addressing,
etc.

Section 2, briefly presents the overall methodology. We tiresent P in section 3 and finally detail
in section 4 whyDDD are well suited to represehf P programs, our coding techniquelofP programs as
well as issues and problems raised in this study.

2 Object Oriented Methodology

We propose a methodology to handle the specific issues ofadittd applications. Its goal is to help the
designer to achieve the development of a distributed agtpdic.

High level
Computational | Specification
‘ aspect
‘ External

Components

Formal model \/

Generation

Formal

> DISTRIBUT
Analysis S N
Code Generation

Figure 1: Development methodology associatedftd

As shown on figure 1, our methodology relies on the separattnween the control aspect and the data
computation aspect in distributed systems. The contr@esmandles the distribution of the application over
the network, and the interaction protocols between the corapts of an application. The data computation
aspect handles the domain specific calculus required taipeotthe results.

Our methodology starts with a high level description of thplecation written in UML. This specifica-
tion should outline the interaction between the computafiaspect and the control aspect of the system.
We focus on the modelling of the control aspect since it iatesl to the specific issues identified in the
development of distributed applications. Therefore, tioistrol aspect of the specification is translated into
LfP a formal language specifically designed to model distrithaggplications control aspect.

The interactions between the control aspect and the cortiquahaspect are modeled using construc-
tions of theL f P language very similar to private types defined in the Ada laug [6].

The formal model obtained from the specification can thermbmélly checked against its requirements.
State properties can be stated in the UML description in Q@Lproperties which involve series of actions
must be stated in temporal logic directly on thieP specification. Formal verification &ff P specifications
is the heart of this paper and will be fully described in satd.

Once the model meets all its requirements, we provide a cexergtor for thé f P language. Automatic
code generation translates théP semantics to provide an effective implementation of thecsjgation

and ensures the correctness of the implementation. It heedescription of the interactions between the
control and the computational aspects to link the generatdd to the external components. The underlying
mechanism of code generation fromlafP model have been discussed in [5].

3 The LfP language

This section will present thefP language through a simple client / server example. We shatl P
provides the appropriate abstractions to model interasti@tween components of an application.

server

T client
handle_request(num: in out integer) |

RPC

Figure 2: Simplified class diagram of the client server examp

Let us first introduce our example with the simplified UML dadiagram of figure 2 that shows the
main model components. The client calls metthadd| e_r equest on the server through a RPC. The
server then returns a value through the out parameter of this method. We will now present thid®
model corresponding to this system. First we will focus oa $tatic description, then on the dynamic
behavior of the components.

3.1 Static structure of the model

)

type simple_port is port (integer); c1 : client with (id => 1)
c2 : client with (id => 2)

)

)

s1 : server with () ; c3 : client with (id => 3) ;
s2 : server with () ; c4 : client with (id => 4) ;
all 1
e
server.itf Client.itf
6 8
fifo fifo

Figure 3: Architecture diagram of the client / server exampl

The static structure of abfP model is described with aarchitecture diagram Figure 3 shows the
architecture diagram corresponding to the class diagrdigurk 2. The main elements of the class diagram
appear on the architecture diagram:

e interaction classes are translated ihtiP mediawhich are components that define the low level
interaction protocol between the application components;

e classes of the model are translated inf® classesvhich implements the control aspects in applica-
tion components.

In order to link the components and define the message quéties application, the architecure dia-
gram introducesindersto link the classes and media of the model. They formalizerthesage transmis-
sion between the components of the model. They are refedéndbe components with variables of type
port identified in the binder’s binding attribute. These varébbre of typei npl e_port defined in the
diagram'’s definitions.

The architecture diagram also defines the static instarfcéb® onodel: two instances aferver and
four instances otl i ent are created on application start up. Each instance of teatdias one of its
attribute initialized with a value that identifies it.

On this specific architecture diagram, the binder that @slRC to clients has multiplicityl, there is
one binder instance for each instance of ctdas®nt . The binder that relatd®Cto Ser ver has mutiplicity
al I which means that the binder is shared by all the instancdgeaflass. A message in this binder may be
read and handled by any server.

3.2 Dynamic behavior of model components

The dynamic behavior of the components is defined by theialieral diagrams. This is an automaton that
defines the actions performed by thE° component in response to an event.

3.2.1 TheRPC media

This media is in charge to implement the “Remote Procedutl @atocol between the client and the
server, it is shown on figure 4. This means that the media neust the message provided by the client to
the server, read the return message from the server andtderibe client.

[idl=id2]

msg : message; &input [idl1] :msg; &target :msg; &target[id2] :msg; &input:msg;

input : simple_port;
target : simple_port;
id1, id2 : integer;

Figure 4: Behavioral diagram of med?C

The media is related to client byput and to the server biyar get ; both ports must be initialized by
the component that creates the instancieRat
The first transition of the media reads a message amjist port and stores the discriminantiidl.
This discriminant should identify the component that seatrhessage. Then the message puts the message
in thet ar get port.
The media then reads a message from the target port and ardptadt if its discriminant is equal to
i d1, that is if it was sent by the component that has sent the stgbimally the return message is sent back
to the client, the media jumps to its initial state and is yetachandle a new message.

3.2.2 Thecli ent class

This class implements the client side of the system and [dalisd on figure 5. This class first creates
an instance of th&C media to handle its communication with the server. Theraittsta loop that calls
methodhandl e_r equest . This means that a message requesting the execution of tiwdris put in the
porti t f, with a discriminant that contains the identifier of the sti;ystance. The transition that contains
this instruction is aal | transition which also waits for the method’s return messabieh updates the
value of parametar.

i : integer := 0 ;
id : integer ;
it_"f : simple port ; link := rpc(target => Server.itf,
link : rpc ; .dl input => itf)
[i>5] [i<=5] &itf [id] :handle_request (i);

Figure 5: Behavioral diagram of claski ent

When the value of becomes greater than five, the loops ends and the clientdmithexecution.

3.2.3 Theserver class

The classserver handles the request. Its main diagram is displayed on fig{ae &/hen instanciated,
a server keeps waiting for the activation of methwahdl e_request. The behavior of this method is
displayed on figure 6(b). It is activated by the arrival of ativation message on part f which is the
shared binder between tREBC media and the server class on the architecture diagram oéfgyu

itf : simple_port ;
procedure handle_request (num : inout integer) ; procedure handle request (num : inout integer) is end;
&itf; num:=integer'succ (num) ;
./—,\F:‘/Dhandlefrequest @ O |)
(a) main diagram of the class (b) behavioral diagram of method

handl e_request

Figure 6: Behavioral diagrams of class ver

The method simply increases the value of its actual paramatéreturns. Since the parameter mode
is i nout, the new value is sent through a return message to the c@ihés.message is implicitly sent on
the method’s activation port when the method returns. Sinealiscriminant of the return message is not
specified, the discriminant of the activation message id.ulsethis case, it means that the discriminant of
the return message contains the identifier of the clientsbiat the request.

4 Formal Verification

The verification of embedded distributed applications egped irL f P covers a large number of properties.
The verification process reduces to computing the readhabdt of the program, which is the set of all
possible states, and then evaluate assertions on the ettseh

A data structure capable of representing large number tdsstaust enable efficient operations such
as equality test, set-theoretic operatiohfP specific operations, as well as a compact representation in
memory.

We illustrate with a simple example a verification approaetimndology based on the usedD (Data
Decision Diagrams) for the symbolic computation of readbatates.

The first section introduces ti¥D.

Section 2,3,4 successively describe the steps used fougiragla verification program from aof P
specification:

e deriving an adequate model for verification purpose,
e computation of the reachable states,
¢ evaluation of assertions on the reachability set.

These steps are illustrated with the verification of the ##napent/server application.

4.1 The Data Decision DiagramsDD)

The purpose of this paper is not to provide a complete defmitif theDDD structure. Theoretical aspects
of DDD are addressed in [3].

Data Decision Diagram¢DDDs) areconcisedata structures for representifigite sets of assignment
sequencesf the form (e, := x3;€ := X2;---;€n := X,) Whereg are variables and; are values. When
an ordering on the variables is fixed and the variables aréebod>DDs coincides with the well-know
Binary Decision Diagram$l, 2]. If an ordering on the variables is the only assumptiobDs are the
specialized version of thdulti-valued Decision Diagrameepresenting characteristic function of sets. For
Data Decision Diagram, we assume no variable ordering aed,more, the same variable may occur many
times in an assignment sequence, allowing the represemiatidynamic structures: for a stack variable
the sequence of assignmefds= x;;a:= Xp;---;a:= Xn) May represent the stack contemts - - - X,.

Figure 7: Two Data Decision Diagrams.

Traditionally, decision diagrams are often encoded ass@®tirees. Internal nodes are labeled with
variables, arcs with values (of the adequate type) and seaith eithero or 1. Figure 7, left-hand side,
shows the decision tree for the st {(a:=1;a:=1),(a:=1;a:=2;b:=0),(a:=2;b:=3)} of as-
signment sequences. As usugtdleaves stand for accepting terminators ankaves for non-accepting
terminators. Since there is no assumption on the cardjraflithe variable domains, we considens the
default value. Therefore-leaves are not depicted in figure 7.

Unfortunately, any finite set of assignment sequences ¢dmepresented. Thus, we introduce a new
kind of leaf label: T for undefinedIntuitively, T represents any finite set of assignment sequences. Figure 7,
right-hand side, gives an approximation of theSet (a:= 2;a:= 3)}. Indeed, an ambiguity is introduced
since after the assignmeat= 2, two assignments have to be represented: 3 andb := 3. These two
assignments affect two distinct variables so they can no¢peesented, as two distinct arcs outgoing from
the same node cannot be labeled with the same value (in otrdsywnon-determinism is not authorized in
the decision tree).

However, since our verification approach only considerd feemed assignments sequences with no
compatibility issues regarding operations, we will coesid leafs as the result of an error in the state set
computation. We now give an overview DDDs, for a more formal and detailed presentation including
theoretical aspects regarding we refer the reader to [3].

4.1.1 Syntax and semantics ddDDs
In the following,E denotes a set afariables and for anyein E, Dom(e) represents thdomainof e.
Definition 1 (Data Decision Diagram) The selD of DDDs is inductively defined byd ID if:

e de{0,1,T}or

e d=(ea) with:

—ecE
— o :Dom(e) — ID, such that{x € Dom(e) | a(x) # 0} is finite.

We denote e*- d, theDDD (e, a) with a(z) = d anda(x) = 0 for all x # z.

Intuitively, aDDD can be seen as a treé@DDs 0, 1 and T are leaves, and DD of the form(e,a) is a
tree whose root is labeled with variat#eand with an outgoing arc labeled wikho a subtree((x) foreach
valuex € Dom(e). From a practical point of view, as non-accepting branchesl§ranches ending with a
0-leaf) are not encoded, the “finite support” condition foensures thabDDs can be implemented (even
when variables range over infinite domains).

The meaning[[d] of aDDD d is a set of finite sets of assignment sequences. In partidiidris
the (infinite) set of all finite sets of asssignment sequen@dsen T does not appear in BDD, the DDD
represents a unique finite set of assignment sequenceigin@eaning is a singleton). Hence, such@D
yields an exact (non approximate) representation and #lisawell-defined

The unique set in the meaning of a well-defimb d is the set of assignment sequences corresponding
to accepting branches (i.e. branches ending witHeaf) in the tree representation @f In particular, we
have[0] = {0} and[[1] = {{()}} (where() is the empty sequence of assignments).

Equivalence checking fdbDDs is crucial wherbDDs are used to represent sets of states. Fortunately,
DDDs admitcanonical formso that equivalence checking fobDs in canonical form reduces to (syntactic)
equality.

Intuitively, from the tree representation point of viewgthanonical form of @DD is obtained by
replacing witho all sub-trees that have onbyleaves and by sharing all subtrees which are equivalerd. Tw
DDDs in canonical form are equivalent if and only if they are dglveoreover, everyDDD is equivalent to
aDDD in canonical form.

In the following,we only considebDDs that are in canonical form

4.1.2 Operations orDDDSs

First, we generalize the usual set-theoretic operatiawsr{union),product(intersection) andifference-

to finite sets of assignment sequences expressed in teD&. The crucial point of this generalization is
that allDDDs are not well-defined and furthermore that the result of aratpn on two well-defineBDDs

is not necessarily well-defined. Tkam+, theproductx and thedifference\ of two DDDs are inductively
defined in the following tables. In these tables, for any {+,x,\}, a1 ¢ ay stands for the mapping in
Dom(e;1) — ID defined by(aj ¢ ta2)(X) = ai(x) ¢ az(x) for all x e Dom(ey).

[+ [o J1[T] (€2,02) |
0 0 1] T (e2,02)
1 1 17 T
T T T T T
Loty e —e
(e1,a1) || (ep,01) | T | T T fete
| ; [O0]2]T] (e2,02) |
Ov(e,a1)=0| 000 0
1 ol1]|T 0
T o T | T T
(e, apxaz) ifep=ep
(e1,01) 00| T 0 ifej#e
[V [o0 [1 [7] (e2,02) |
0 0 0 0 0
1 1 0 T 1
T T T T 1
(epap\az) ifer=e
T .
(&1,00) || (&1,00) | (€1,00) (enay) ifeire

These set-theoretic operations@DDs actually produce the best possible approximation of thelte
More precisely, ifd andd’ are twoDDDs, then the surd +d’ (resp. the produa «d’, the differencal \ d’)
is the “best definedbDD whose meaning contains the 48U S|Se [[d] andS € [[d']} (resp. the set
{SNS|Se [d], S € [d']}, the sef{S\ S|Se< [d] andS € [d']}).

The concatenation operator defined below corresponds totieatenation of language theory.

0 ifd=0vd =0
d fd=1
/
d-d'=q ¢ ifd=TAd #0

(ea-d) ifd=(g0)

Notice that anypDD may be defined using constantst, T, the elementary concatenatien*..d and
operatort, as shown in the following example.

Example 1 Let dy be theDDD represented in left-hand side of Fig. 7, anglttie right-hand side one.

da al, EaLH aib&lg +a-2.b 3.1

ds al (ati1+a2b9%1)+a2T

Let us now detail some computations:

data2a31 = al(atiit+a?b%1)t+a’, (bi>1+ai>1>
= al(atil+a?b%1)+a 2T
~ ds
1 2 _ _ 1 2 _ 1 _
(a_>1*a__>1>*‘l' — 0+T=0#al.1« (a_>1*T> —al1«T=T
da\ds = a2, bil\T) =a 2T
dg-cc*1 = al, ai>ci>l+ai>bi>ci>l> +a2,T

4.1.3 Homomorphisms orDDDs

In order to iteratively compute the reachability set oLd® program, we need to transldtéP instructions
into DDD operations. These complex operationsODs are described by homomorphisms. Basically,
an homomorphism is any mappidy: ID — ID such that®(0) = 0 and such tha®(d;) + ®(dy) is better
defined tharp(d; + dy) for everyds,d; € ID. The sum and the composition of two homomorphisms are
homomorphisms.

So far, we have at one’s disposal the homomorphisnd which allows to select the sequences be-
longing to the giverbDDD d; on the other hand we may also remove these given sequehaekstto the
homomorphism Id d. The two other interesting homomorphisms tdandd - Id permit to concatenate
sequences on the left or on the right side. For instance, aelyiged left concatenation consists in adding
a variable assignmeet = x; that is denote@; L,1d. Of course, we may combine these homomorphisms
using the sum and the composition.

However, the expressive power of this homomorphism fansillimited; for instance we cannot ex-
press a mapping which modifies the assignment of a givenblariaA first step to allow user-defined
homomorphisn® is to give the value ofp(1) and of®(e_*.d) for anye_*.d. The key idea is to define
®(e,a) asy xepom(e P(e—-0a(x)) andd(T) = T. A sufficient condition ford being an homomorphism
is that the mapping®(e,x) defined agb(e x)(d) = ®(e-*.d) are themselves homomorphisms. For in-
stance,nc(e,x) = e*"11d andinc(1) = 1 defines the homomorphism which increments the value of the
first variable. A second step introduces induction in thecdpgon of the homomorphism. For instance,
one may generalize the increment operation to the homornsmphc(e;), which increments the value of
the given variable;. A possible approach is to sieic(e;) (e, x) = eX*3Id whenevere = e; and otherwise
inc(e1)(e,x) = e-X.inc(er). Indeed, if the first variable is;, then the homomorphism increments the values
of the variable, otherwise the homomorphism is inductiagdplied to the next variables.

The formal definition of inductive homomorphisms can be fim[3]. The two following examples
illustrate the usefulness of these homomorphisms to desgnoperators odDD. The first example for-
malizes the increment operation. The second example is @ @peration between two variables. It gives a
good idea of the techniques used to design homomorphismssioe variants of Petri net analysis.

Example 2 This is the formal description of increment operation:

x+1 . -
inc(e)(e:) o Teme

e——inc(e;) otherwise
inc(en)(1) = 1

Let us now detail the application of inc over a simpleD:

inc(b)(a—tb-2.c-3,d-%,1) = a Yiinc(b)(b-2.c2,d-2,1)
a-tb2id(c3.d-4.1)
alb3.c3.d4a

Example 3 The homomorphism swég, e») swaps the values of variables and e. It is designed using
three other kinds of homomorphisms: rendeag, dowr(er,x1), up(er, x1). The homomorphism renalieg)
renames the first variable into edown(er, x;) sets the variableseto x; and copies the old assignment of
e1 in the first position; uper, x;) puts in the second position the assignmante.

renamgey) odown(e;,x) ife=e

renamgep) odown(ez,x) ife=eg
swape;, e)(ex) = {

X .
e — swaler, e) otherwise
swaper,e)(1) = T
renamder)(ex) = e —Id
renamee;)(1) = T
X X1 .
e—e—1ld ife=e
down(ey,x1)(e) { up(e,x) odown(er,x1) otherwise
down(er,x)(1) = T
up(er,x1)(eXx) - e X ™d
up(es, x1)(1) =T

Let us now detail the application of swap over a simpfeD which enlights the role of the inductive
homomorphisms:

(b-%.c2.d-2.1)
odown(d,2)(c—2.d-%.1)
a_L.renameb) o up(c, 3) o down(d, 2)(d—2.1)
a_L,renaméb) o up(c, 3)(d—%,d_2,1)

a1 .renaméb)(d—2.c3.d-2.1)

= alb?c3d21

swapb,d)(a-t.b-2,c3,d-%4.1) = al.swagb.d
a_L,renaméb

One may remark that swép, e)(a—1.b_2,c-2,d_%,1) =a_1,T.

Basically, theDDD data structure provides a compact encoding and a usage obmpeaimilar to the
BDD (Binary Decision Diagram). The operations calls andfrtresults are stored in a operation cache. Data
are stored in a unicity table based on a hash table. A carlea@sentation of the states allows for efficient
comparison of diagrams. Set-theoretic operations areatefamd families of inductive homomorphisms
representing the operations of théP language can be user defined. @D structure meets both the
requirement of efficiency and compacity.

4.2 Deriving an adequate model for verification purpose

The direct computation of reachable states from the initiatlel may be impossible in many cases. The
combinatory explosion can have different origins: inhésemplexity of the problem, level of detail of the
model, size of the model, concurrency.

One main difficulty is to evaluate the complexity of the moded identify modifications in order to
enable reachability set computation. Different models hrae to be derived in accordance to the properties
to be verified.

We distinguish two ways of making changes to the model: dtaive and qualitative modifications.
The only purpose of these modification is to focus on the $eafrpotential problems.

4.2.1 Quantitative alteration

The quantitatives modifications often lead to a redimensimn of data. Such modifications are easy to
achieve if the size of components are clearly visible in thsigh. The choice is guided by the effect of
the change on the complexity and by considering the synsetfithe system. It may also permit to study
different phases in the execution of the model, for instanitialisation, termination.

Example 4 For instance, the simple model presented in this articléatsa client/server application com-
posed of 4 clients communicating with 2 servers. Each cliemkes 5 times a service that increment of 1
a parameter value. The service is supported by both seraaysavailable server can execute the service.

If we call F(M, S, C) the number of possibles sequences of Mages by C clients to S server, a
preliminary complexity analysis gives:
F(M,1,C) =F(M,1,(C—1)* ((C—1)*M+1)M)
>F(M,1,(C—1))*(((C—1)«M)M)
>F(M,1,(C—2))*(((C—2) xM)M)x ((C—1)xM)M)
> (((C—1)! xM)M)le-1)
F(M,S,C) >SMLO
In the case of our example, we reach a number of sequenceg,HB; 2°1.03 e+28 that doesn't even
considers the additional complexity from the model. It mes necessary to modify the model in order to
compute the reachable states. We have been able to veripenties by reducing the size of the message
sequence in various ways.

However, resizing the application for verification purposay not be an acceptable solution. We cur-
rently study other approaches using abstract represansatf set of states by meansiidD, [15].

4.2.2 Qualitative alteration
The qualitative changes include:
e simplification of the model that preserves information & firoperties to be verified,

e addition of working hypothesis often linked to the domainapplication and restricting the set of
reachable states.

The simplification of the model often leads to the abstractibsome mechanisms. For instance, the
merging of two transitions when conditions allow it, willdece the interleaving and thus, will reduce the
size of the reachability set. Such simplification may be ptatgle when the validity of properties remain
unaffected.

A working hypothesis defines what is a consistent state arat i8ha discardable state. Applying a
working hypothesis on a set of states filters all inconststates with respect to the hypothesis.

Example 5 For instance, additional hypothesis have been added toritialimodel of a train system [7].
This model was describing the interactions and the behafiarset of trains. The global state of the system
was composed of the state of each train. The model was quitpler &100 transitions) and its parallelism
complicated the computation of the reachability set whealidg with a complex scenario. As time was not
explicitly part of the model, valid states computed by firsggjuences in the model would never exist in
reality.

The hypothesis that has been added had the effect of diagaadli global states that consider the
positions of trains at different dates. The applicationhisthypothesis had an immediate effect on state
computation and allowed the verification of complex sitradi

4.3 Computation of the reachable states

The computation of the reachable states consists in engthiénstate of ab f P program by means @bDD
and implementing the homomorphisms that compute the neéasstarresponding to the firing of transitions
in the model.

4.3.1 Coding of a state

The state of anLfP specification is encoded into a DDD. Variables of the systeenvariables of the
DDD and their values are attached to the arcs. The codingeo$ttite represents a mapping of variables
that can only be accessed sequentially by the inductive hwonghisms. Thus, the implementation of
homomorphisms strongly depends on the coding of the stdteeelimportant issues have to be solved in
the encoding of ah f P state by means ddDD as done in [15]. First, a canonical form must be defined
and conserved during the state computation. Second, ttieydar encoding of ah f P state must support
several dynamic aspects. And last, the encoding of therstiatéguarantee the compatibility with theoretic-
set operators.

10

Type declaration of v DDD

Array v; v%v%...

Setv; v Sizey el el
VectorMultiSet v; v nbvect,, vectlsizel |, vectleltl |, vectleltz

Table 2: Data types representation by mearmb.

Canonicity is a fundamental requirement that allows reblehstate computation. A canonical represen-
tation of the state allows to reduce the comparison betw&ento a pointer comparison (O(1)). Canonicity
is achieved by imposing construction constraints on alicstires. The operations that manipulate the state
or any structure within the state produce states that réfipeconstraints. For instance, an absolute order
between elements of a set must be defined. Operations onrasstsespect the order.

The coding of the state requires a coding of the data strestamd associated operations supported by
the input language that respect the canonical form. In tee ofLfP, we need to implement the following
features:

e multi-sets of vectors, e variables at all scope (global, instance, local
and class),
e sets and multi-sets of scalars,
e arrays,
e instances of classes and media, e stacks.

Dynamicity causes the handling of states with varying sib#@errespecting the constraints of canonicity
and operation compatibility. f P provides dynamic features that are integrated in the stateding:

e creation and destruction of instances,
e structures such as sets and multi-sets, FIFOs,

e method of function calls (stack).

By definition of theDDD structure, only one arc with a given value can be the outpatrwdde. Thus,
dynamicity can cause compatibility problems when addpg.

Example 6 The following example recalls a typical case of incompétibi The addition of the DD
produces an invalid result where the node 'a’ get 2 arcs valiel’.

aa¥W¥cV +alc e . zal\

We used prefixing techniques to constrDEID that are always compatible. For instance, a set is iden-
tified by one variablev'. A DDD representing the se¥”’can be seen as an assignment sequence using the
same variable. Prefixing a set with a variable containingsthe of the set will enforce the compatibility
betweerDDD containing sets.

Typically, arrays and structures are coded using one Mariabhe semantic of a value (size, value,
...) depends on its position. The inductive homomorphissesthe position of the value to decode the
structures.

The table 2 summarizes the encoding of some common strgcture

Now that we can code all basic structures by mearsnib, we can show the encoding of the whole
state. At the top of the hierarchy the different componeh#sd f P program appear in the following order:

1. global variables, 3. instances,

2. global binders (binder all), 4. end of state (special marker).

Each component is BDD that represents a structure or a single variable like, farrgde, a special
marker. The different fragments represented here are $samaled using the concatenation operator.

11

A canonical representation requires a particular ordesfrapject instances: the instances are grouped
by class and an order must be defined in such a way that ordee ofdtance remains the same whatever is
the sequence of insertions. All object instances have time séructure shown below:

1. begin instance (special marker), instance variables,

2. instance marker, program counteRC),

3. local media, stack (empty if not within a call),

© N o U

4. local binders, end of instance marker.

The structure of the local media is simple:

1. mediaid (variablene,
2. message storage (multiset of vectors),

3. program counteiRC),

A block pushed on the stack is defined for each method. Thiskbiepresents local data used by the
method call. The correspondim®dD has the following shape:

1. parameters,
2. local variables,
3. return state.

Example 7 The followingDDD is an example of a global state of the client/server appiiatvith 1 client
and 1 server. The variables prefixed with 'Glb’ are the glolatiables, then comes the global binders
and then the instances. In some cases, the use of symbeladraftvalues has been used to improve the
legibility. Variables of the media in the client instance @&asily recognized with the prefix 'RPC’.

Glb.tmp1-%, Glb.tmp2-2, Glb.tmp3-2, Glb.tmp4_2,
binderall_in —°, binder.all_out -2,
__BeginOfinstanc&Vemk

server.mk 2, server.iv.discr _2, server,pc"oneRedn
__EndOfinstance %,

__BeginOfinstanc&-'ENTmk

CLIENT.mk_2,
RPC.me_%, RPC.locset_%, RPC.loc.discrL, RPC.loc.id1-%, RPC.loc.id2-%,

RPC.pc"°nebean
CLIENT.locbinder_%, CLIENT.locbinderout _2,
CLIENT.iv.i %, CLIENT.iv.id_L.,

CLIENT.pc"oneegin
__EndOfinstance %,
__EndOfState °., 1

12

4.3.2 A set of basic Homomorphisms for EP

A set of basic homomorphisms has been implemented to resitiggle operations of thefP language.
The composition operatiom) allows to combine the operations in order to design thenofamplex ho-
momorphism that represents the firing of a transition. Adksimomorphism takes as input a set of states
and produces a set of intermediate states.

We summarize in the table 4 the homomorphisms that deal ttfiunctionning of the state machines
and the evaluation of boolean guards. Table 6 describesthemmorphisms that deal with communications
and media.

Typically, an homomorphism associated to a transitiontstay checking if all boolean conditions are
satisfied, using th&larkFireablehomomorphismMarkFireablecreates a new state where one instance
that satisfies the condition is marked. If multiple instagaalify, then a state will be created for each one
of them. All the other homomorphisms use the mark to iderkigyinstance to be processed.

When the computation of the new states obtained by the fifiagi@nsition is finished, the homomor-
phismResetMarlconcludes the firing by reseting all markers from the newestat

State Machine Ho- | Parameters Description

momor phisms

MarkFireable Class, ExprG, Ex-| Mark exactly one instance of an object©@fassif its state satisfies the globg!

prL boolean expressioBxprG and the local boolean expressiBrprL . Returns
an empty set of states if no instance qualifies.

AssignVar Class, Var, Expr | Assigns to the variabl&/ar the result of the evaluation of the expression
Expr. Variables in the expression and the assigned variablesswereed to
be in the scope of the marked instance of clakss

ResetMark Class Reset the marker of a marked instanceCtdiss This homomorphism con
cludes any transition firing.

Goto Class, State Assign the program counter of the marked instanc€lass with the new
automaton statState.

ResetGIbTmp Initialize all temporaries to 0, in order to avoid duplichi&ates.

VarAdd Class, Var, Inc,| Increments the variabMar in the scope of the marked instanceiasswith

Modulo Inc andModulo parameters.
ProcesskKill Class Destroy (remove from the state) the marked instancéla$s
Insertinstance Class Insert an instance @lassin the state.

Table 4: Homomorphisms related to state machines.

Communication Ho- | Parameters Description
momor phism
SendCallMeth Class, Binder, Tar-| Generate a message containing a remote call of procédate by an in-
get, Meth, NbParam, stance ofClassto Target and store it inBinder. Parameter$aram List
Param List are in the scope of the initiating instance. The binder caeither multi set,
FIFO, local or global.
SendCallVMeth same as SendCalll Same aSendCallMeth, except that the method is the value of a variakae
Meth, Var in the scope of the emitting instance.
ProcessReturn Class, Binder,| Process a return message concluding a remote procedu(®e&l) initiated
NbParam, Param| by Classafter reception of the messageBinder. Assign values stored ir}
List the message to the list of variables passed in the paransttéatam. List.
ReceiveMethCall Class, Binder, Locals| Process the reception of an RPC message emitted by an iestE@lassand
NextState, Return-| stored inBinder. Save the context on the local stack of the receiving ingtanc
State push local variabletocals and ReturnState, set program counter value tp
NextState
Select Class, Binder, Branch Process a branch (state with multiple output arcs) with émoland message
Descr. guards in an instance @flass. Messages are read fraBinder. A descrip-
tor Branch Descrspecifies the precondition and postcondition starting epch
branch.
Binder2Media Binder Transfer messages fronbinder to a media. The message contains the id of
the destinationBinder can be multi set or FIFO, local or global.
PurgeMedia Empty the Media
Media2Binder Binder Transfer messages from a Media to a Bind&nder can be multi set, FIFO|
local or global.

Table 6: Homomorphisms related to Communications.

13

4.3.3 Coding of a transition

In most of the cases, each transition is associated to antnonphism. For performance reason, an homo-
morphism is associated to states with multiple output bteae@nd processes all transitions at the head of
each branch.

A transition homomorphism can be seen as the compositiopi&@ndition evaluation homomorphism
and a postcondition homomorphism.

The following fragment of code shows an example of a C++ fismateturning the composition of the
two homomaorphisms that constitutes the firing of the tramsit The operatop is implemented with the
C++ operator &. Operands of & appears in the inverse orddreif application.

The parametegsis an instance of the class descriptor of the applicatioprdvides the capabilities to
generate th®DD structure corresponding to the initial state of the systeh\aays to refer to variables
within theDDD structure.

GHom FI RE_SERVER handl e_r equest _succ(GenAppSt at e &gs)
{

return
POST_SERVER_handl e_r equest _succ(gs) &
TEST_SERVER handl e_r equest _succ(gs);
}

According to theLfP specification, the second transition of methwahdlerequestincrements the
value ofnumand terminates the method call (cf fig. 6(b)). For impleméntgpurpose, name are given to
object. The transition is callé8E RV E Rhandlerequestsuccand the state precondition of the transition is
calledSERVERhandlerequeststart.

The following code implements the precondition and postiion homomorphisms for this transition.

The TEST.SERVERhandlerequestsucchomomorphism creates states with one marked instance of
classServerthat satisfies the transition precondition.

GHom TEST_SERVER handl e_r equest _succ(GenAppSt at e &gs)
{

return
Mar kFi r eabl e<GenCSSer ver >(
Cst(1), // no condition on global variables, always true
(Var(GenCSServer::PC) == [/ precondition is only testing the state
Cst (Al States:: SERVER handl e_request _start)));

The POST.SERV EERhandlerequestsucchomomorphism realizes the action associated to the transi-
tion. The composition starts by incrementing the localafalé num by the constant 1.

Then areturn message from RPC is generated. This messaigs eatiscriminant valugs Server.discr
that was set when the RPC was initiated. It contains theifiEmaf the initiator. The identifier of the mes-
sage isAllStates:: SERVERnoneret_handlerequestspecifies the type of the message. The message
contains only one parametenum

Note that the construction @fs follows the same hierarchy as the origihdlP program. For example
gsServehandlerequestnumrefers to the local variable of methddndlerequest The value of the C++
variable contains the identifier of the corresponding \@ei&n theDDD.

The Pop homomorphism restores the context at the end of the methbd The AssignvVarhomo-
morphism reset the value of a local variable in order to kteitthe generation of states. TResetMark
homomorphism concludes the firing of the transition by iiegehe instance marker.

GHom POST_SERVER handl e_r equest _succ(GenAppSt at e &gs)
{
Reset Mar k<GenCSServer>()& // reset the mark concluding
Assi gnVar <GenCSSer ver >(gs. Server. _discr, Cst(0))& // reset this local variable
Pop(gs. Server)& // exit fromthe nethod call
scSendCal | Met h<GenCSSer ver >(true, gs.BinderAllld_out,
gs, gs.Server._discr,
All States:: SERVER__none__ret_handl e_request,
1, gs. Server. handl e_request. num &
Add<GenCSSer ver >(gs. Server. handl e_request.num 1, -1);

14

4.3.4 Reachable states computation

The simple computation of the reachable state space isramiviprocess where all transitions are applied
during one iteration.

Begi n

DDD CURRENT

Set of transitions TSET

Create the initial state CURRENT

DDD ACC=NULL
Repeat
DDD OLD_CURRENT=CURRENT
For each transition T in TSET:
CURRENT=CURRENT+T(CURRENT)
BOOL Got New=(ACC+CURRENT! =ACC)

ACC=ACC+CURRENT
CURRENT=CURRENT- OLDCURRENT
Until (!Got New)
Return ACC

End

A preliminary filtering allows to eliminate transitions thiaave no chance to be fired. In our case this
preliminary filtering is done by testing the simple condition the program counter of each instance. A
static structure generated by the verification programggile list of potentially firable transitions for each
value of the program counter of any instance. The list of piaély firable transition is updated on the fly
when new states are computed. This improvement made a bletididference in performance.

A number of algorithms can be applied for the computationhef teachable states. Their study is
beyond the scope of this paper.

4.4 \ferification of properties

The verification process handles generic properties dfiliged systems such as liveness, search for dead-
locks, coverage, and specific properties tied to the systern as assertions on variables of the state. In
any case, the verification of a property consists in expngssby means of an homomaorphism that will be
applied to the set of reachable states.

4.4.1 Searching for deadlocks

If T1,.. Tnare the transitions of the system addm.T1,.. HomTn the corresponding homomorphisms.
Let Hom.Sumbe the sumHom. SunrHom.T1 + Hom.T2 + .. HomTn. Hom.Sumwill return the null
homomorphism if it applies to a blocking state.

We reproduce the output generated by the verification progmahe computation of blocking states of
the system with 2 servers, 2 clients sending 2 messagesmfiifsi the reading, th®DD containing the
state of the system is displayed by putting between parsisttiee value associated to a variable. Comments
have been added to improve legibility. In the following, yohe instance of each class is shown to save
space.

[TERM NALS =
/1 global variables:
Gb.tnpl(0) Gb.tnp2(0) Gb.tnp3(0) G b.tnp4(0)

/1 gl obal binders:

bi nder _all _in(0) binder_all_out(0)
Il instances

__Begi nOf I nst ance(server. nk)
Il marker

server. mk(0)

/linstance variables & program counter
server.iv._discr(0) pc=server.pc(_none_begin)
__EndOr I nst ance(0)

. Il others instance of server

15

__Begi nOf I nst ance(CLI ENT. nk)
CLI ENT. nk(0)

//media of client, instance variables
RPC. me(0) RPC.loc_set(0) RPC.Ioc.discr(1) RPC.loc.idl(1) RPC.loc.id2(1)
pc=RPC. pc(_none_begi n)

Il client local binders
CLI ENT. | ochi nder (0) CLI ENT. | ochi nder _out (0)

[lclient instance variables
CLIENT.iv.i(2) CLIENT.iv.id(1)

pc=CLI ENT. pc(_none_end)
__EndO I nst ance(0)

. I/l others instance of client

__EndOr State(0)]

Only one state has been found with the following charadtesis

e N0 communication are pending

o all servers are ready to process a request

¢ all clients are terminated

So the only blocking state is a terminaison state as it is ddfin the model. This model has no invalid
deadlocks.
4.4.2 Coverage test

A routine showing a compact view of the state space showsoakiple values assigned to all variables
composing the state. A look at the program counter of allimsés shows that all the states have been
explored. Additional states may be added to the model tow#altransitions sharing the same input and
output state. This test can also be useful to:

e estimate or determine the size of the communication bufenglers),

e define the domain of variables

In this example we only show the results for one instance cfi etass.
[COVERAGE =
@b.tnpl(0) G b.tnp2(0) Gb.tnp3(0) G b.tnpa(0)

binder_all _in(0 12) binder_all_out(012)

__Begi nOf I nst ance(536870922)

server. k(0)

server.iv. _discr(012)

server. pc(_none_begi n handl e_request _begi n handl e_request _start)
__EndOf I nstance(0)

__Begi nOf I nstance(536870931)

CLI ENT. nk(0)

RPC.me(0) RPC.loc.discr(0 1) RPC.loc.id1(0 1) RPCloc.id2(0 1)
RPC. pc(_none_begin _none_pl _none_p2 _none_p3)

CLI ENT. | ocbinder(0 1) CLIENT. | ochinder_out(0 1)

CLIENT.iv.i(012) CLIENT.iv.id(1)

16

CLI ENT. pc(_none_begin _none_start _none_process _none_ wait_handl er _request _none_end),
__EndOf I nstance(0)

__EndOrState(0)
]

4.4.3 Assertions on variables

An assertion on a variable can be easily translated into emohmrphism that evaluates the boolean expres-
sion corresponding to the negation of the assertion. Thisdmeorphism is applied on the set of reachable
states and should return the empty set, if the original tiesds satisfied.

Example 8 The computation of states of the system with 2 servers, glgending 2 messages has been
performed.

We now would like to show that the set of states that satisfpelgation of the expressiofQlient. PC =
client.noneend) = (client.i = 2)) is empty.

The computation of such a set can be easily done by buildegdmomorphism that will check the ex-
istence of such states. We directly reuse the MarkFireabhedmorphism that allows for checking boolean
expressions on states.

GHom CheckAssert Ter n{ GenAppSt at e &gs) {
return
Mar kFi r eabl e<GenCSCl i ent >(
Cst (1), // no condition on global variables, always true

(Var(GenCSO ient::PC) == Cst(All States:: CLI ENT__none_end)) &&
(Var(gs.Qient.i)!!=2)

5 conclusion and future work

In this paper, we have presented how we could handle the rabdeking ofLf P, a high-level specification
language. The main problem raised in this study resides auayc aspects proposedlifiP: creation of
processes, RPC mechanisms, addressing, etc.

DDD were successfully used for the analysis of Petri nets [3]vesick also experimented successfully
for LfP. To achieve model checking, a basic set of homomorphism&éeas defined and implemented
to enable the computation of the reachability set of &R specification. An execution environment sup-
porting basic debugging capabilities and the computaticth@ reachable set of dof P model has been
implemented. We have started developping a code genehatdranslates an XML file containing tihd P
program and generates C++ files that will be linked to the eti@a environment.

The efficiency of theDDD operations and the compacity of the structure allowed tmepeaation of
large reachability sets [7] of compléxf P models. We summarized the main technical difficulties in the
representation of &fP program by means adDD: canonical representation of the state, support for dy-
namicity, diversity and complexity of the mechanisms to liempent.

We also address complexity issues that may be solved by roaiilifn of the model. The derivation of
models for specific verification purposes is currently mostipported by the user expertise. We believe
that an abstract representation of the state may help gpthése issues [15].

Compiler optimization techniques will be developped tomjte the construction of homomorphisms.
A language for the specification of properties needs to beldpped as well as associated translation tools
to generate the homomorphisms.

The development of such tools will provide a wide accesseefficiency of thedbDD structure and will
free the user from the tedious manual implementation of hoorphisms.

17

References

[1] B. Akers. Binary decision diagram#EEE Transactions on Compute®7(6):509-516, 1978.

[2] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implentation of a BDD Package. Ri‘th
ACMI/IEEE Design Automation Conferengmges 40-45, Orlando, Florida, June 1990. ACM/IEEE,
IEEE Computer Society Press.

[3] J. M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poittehaand P. A. Wacrenier. Data decision
diagram for Petri nets analysis. Rroc. of ICATPN 2002volume 2360 of.LNCS pages 101-120.
Springer Verlag, june 2002.

[4] F. Gilliers, F. Kordon, and D. Regep. Proposal for a MdBased Development of Distributed Embed-
ded Systems. 18002 Monterey Workshop : Radical Innovations of Softwak3ystems Engineering
in the Future Springer Verlag, 2002.

[5] F. Gilliers, F. Kordon, and J-P. Velu. Generation of diatited programs in their target execution
environment. IrProceedings of the 15th International Workshop on Rapide®y#rototypingpages
90-97. IEEE Computer Society, 2004.

[6] 1SO. Information Technology — Programming Languages — A8®, February 1995. ISO/IEC/ANSI
8652:1995.

[7] F. Kordon and M. Lemoine, editorsFormal Methods for Embedded Distributed Systems: How to
Master the ComplexityKluwer Academic, 2004. ISBN:1-4020-7997-4.

[8] F Kordon and Lugi. An Introduction to Rapid System Prgfuhg. IEEE Trans. Softw. Eng.
28(9):817-821, 2002.

[9] F. Kordon, I. Mounier, E. Paviot-Adet, and E. Regep. Fatmwerification of embedded distributed
systems in a prototyping approach. Monterey Workshop 2001: on Engineering Automation for
Software Intensive System Integratidane 2001.

[10] N. Leveson. Software engineering: Stretching thetbrof complexity.Communications of the ACM
40(2):129-131, 1997.

[11] Lugiand J. Goguen. Formal methods: Promises and pmeblEEEE Software14(1):73-85, January
/ February 1997.

[12] OMG. Model Driven Architecture (MDA), Document numbemsc/2001-07-01. Technical report,
OMG, 2001.

[13] D.Regep and F. Kordon. LfP: A Specification Languagdiapid Prototyping of Concurrent Systems.
In Proceedings of the 12th International Workshop on RapideBy$’rototypingpages 90-97. IEEE
Computer Society, 2001.

[14] D. Regep, Y. Thierry-Mieg, and F. Kordon. Modélisatiet vérification de systemes répartis: une
approche intégrée avec LfP. Rroceedings of AFADL'03January 2003.

[15] Y. Thierry-Mieg, J-M. llie, and D. Poitrenaud. A symlimsymbolic state space representation. In
Proceedings of the 24th IFIP WG 6.1 International Conferenn Formal Techniques for Networked
and Distributed Systems (FORTE’Q#)adrid, Spain, September 2004. Springer Verlag. To appear

18

