
F r a m e K i t , an A d a F r a m e w o r k for a Fast I m p l e m e n t a t i o n o f C A S E E n v i r o n m e n t s

F a b r i c e K o r d o n & J e a n - L u c M o u n i e r ,
L I P 6 - S R C

U n i v e r s i t ~ P . & M . C u r i e
4 p l a c e J u s s i e u , 7 5 2 5 2 P a r i s C e d e x 05 , F r a n c e

E-mail: Fabrlce .Kordon@lip6. fr, Jean-Luc .MounierOlip6. fr

Abstract : Software engineering methodologies rely on
various and complex graphical representations and are
more useful when a~wociated to CASE (Computer Aided
Software Engineering) tools designed to take care o f cons-
traints that have to be respected. Now, CASE tools gave
way to CASE environments (a set o f tools that have a
strong coherence in their us). This concept provides enhan-
ced solutions f o r software reusability while the environ-
ment may be adapted to a specific understanding o f a
design methodology.
This paper describes FrameKit, an Ada bctsed f ramework
dedicated to the quick implementation o f CASE environ-
ments. We summarize first the concepts implemented in
FrameKit and illu~vtrate them rising a detailed example o f
a simple tool implementation and integration.
Key word: Generic CASE, Software platform, Tool integra-
tion, Software Engineering, quick implementation

1. Introduction

Software engineering methodologies rely on various and
complex graphical representations such as SA-RT, OMT,
UML etc. They are more useful when associated to CASE
(Computer Aided Software Engineering) tools designed to
take care of constraints that have to be respected. Such tools
help engineers and facilitate the promotion of such metho-
dologies.

Now, CASE tools gave way to CASE environments
which may be adapted to a specific understanding of a de-
sign methodology. A CASE environment can be defined as
follows [17] : it is a set of tools that have a slxong coherence
in their use. This concept provides enhanced solutions for
software reusability. CASE environment are built on a plat-
form that allows tool plugging. Communication and coope-
ration between tools must subsequently be investigated.

The implementation of CASE environments is a com-
plex task because they need various functions like a graphi-
cal user interface, database facilities and, of course, the
operations that are related to the methodology they imple-
ment (compilation of specifications, animation/simulation
of specifications, code generation from specification, etc.).

Even early platforms offer solutions for tool reuse and
cooperation. One of the first one, APSE [2] is mostly data
oriented and dedicated to Ada development. ESF [6] and
HP-Softbench [8] suggest a communication oriented archi-
tecture. ISTAR [4] proposes a strong "process orientation"
based on a contract concept defining inputs, outputs and
constraints. Then, some standards like ECMA [5] and then
CORBA [15] provide a complete architecture model that
identifies required services and considers discrete dimen-
sions of cooperation between tools and a hosting platform

(usualLy data, control and presentation).
Experimentation over large projects have outlined the

difficulty to maintain such environment, especially when
tools come from various origin. In a project like Ptolemy
[16], the software basis for the project have largely changed
in order to ease maintenance as well as new development.
Such work (in particular, the Tycho interface system [9])
take into account the definition of evolutionary interfaces
between major components.

This paper describes FrameKit [10, 11], a framework de-
dicated to the quick implementation of CASE environ-
ments. FrameKit is parameterized in order to provide a
framework for the customization of CASE environments
dedicated to a given method (Figure 1). FrameKit is mostly
integrated in Ada (a small amount of C is used for the inter-
face with Unix) and provides enhanced Ada Application
Program Interfaces (API) to operate a light but efficient
customization procedure.

Figure I : From a Generic CASE to a dedicated one.
We present In-st the main lines of the FrameKit architec-

ture (Section 2.). Then, we present principles of too] design
and implementation and illustrate with a detailed example
how the Ada API implement these principles.

2. Overview of the FrameKit Architecture

2.1. S t r u c t u r e o f a C A S E e n v i r o n m e n t

A CASE environment is composed of several cooperati-
ve components :

• a pla~orm having communication and data storage
capabilities;

• a set of tools driven by the platform. Each one is an
independent software which can run out of the environ-
ment and offers functions that may enrich it.
To achieve this enrichment, a procedure called integra-

tion has been defined. We distinguish two types of tool
integration : a priori and a posteriori.

• the a posteriori integration : involved tools are already
designed; source files may not be available.
The a priori integration concern tools that are especially

designed to run in a CASE environment. It does not raise
any major problem while the selected implementation tech-

Ada Letters, Sept~Oct 1998 Page 57 Volume XVIII, Number 5

nJques and standards are considered at the implementation
stage. Platform functionalities are usually used the best
way, especially when APIs (Application Program Interfa-
ce) are available.

The a posteriori integration concerns already designed
tools (some times, source files m ay not be available) to be
integrated in a CASE environment. It requires an adaptation
of the imported software. The complexi ty o f such an opera-
tion depends on several criteria regarding modulari ty and
portability o f the tool : these aspects concern both its func-
tionalities and its relation with the execution environment
(file system, operating system...).

According to [18], the integration procedure must take
into consideration five integration axis :

• P la t form : tools must run on a platform giving a trans-
parent access to heterogeneous machines and to the ope-
rating system.

• Presen ta t ion : the user interface must be homogeneous
for any tool. Window managers and look and feel style
guides are useful.

• D a t a : tools have to exchange and share data.
• Control : tools have to cooperate, notifying events to
others tools. They may also need services provided by
others ones.

• Process : the main goal o f an environment is to support
development processes. Thus, it is o f interest to define a
technique to describe such processes.
However , the definition o f these five axis are quite theo-

retical. It is difficult to manage them all properly. In Frame-
Kit, we have chosen to reduce them to three :

• Presentation axis and basic aspects o f process functions
are grouped in a U s e r l n t e r f a c e axis,

• Some of the Data axis defined in [18] arc covered by the
Data m a n a g e m e n t a x i s ,

• Platform axis and basic control functions arc grouped
together in an E n v i r o n m e n t axis.
As a guide to both types o f integration, we introduce the

following notions : Formal i sm , mode l and Service. A For-
realism describes representation rules o f a knowledge do-
main. A model is the description o f a given knowledge
using a formalism; it is a ((document>) composed with ob-
jects defined in the formalism. A service is a tool function
that correspond to operations in a design methodology. Ser-
vices are related to a set of formalisms (i.e. the operation
has a signification for these formalisms) and thus, can be
applied on models issued form these formalisms.

The formalism notion is more related to the User Inter-
face axis. Model notion is associated to both User Interface
and data management axis. The service notion is strongly
connected to the environment axis.

2.2. U s e r I n t e r f a c e

In FrameKit, presentation and display o f services are
strongly consUrained. Both types of functions are supported
by Macao [13], a polymorphic editor able to manipulate
models after the corresponding formalism description. It
provides a unified look and feel for both the manipulation
of models and access to the services integrated in FrameKit.

The construction of a new formalism does not imply any
recompilation of Macao. All the required information is de-
fined in an external file that expresses possibilities o f the
formalism. Of course, Macao deals with syntactical aspect

only, semantical ones are a convention between the user
and the tool.

In FramcKit, description o f formalisms is object-orien-
ted. This allows an easy management and updating of for-
malisms. Each class in the formalism is either a nude or an
edge (interconnecting nodes) and contains a set o f labels
(string values, digits...) that characterizes instances o f the
object. Additional information (how it looks, is it a link to
a ~sub-level~ when the formalism is hierarchic, etc.) must
also be provided to fully describe the formalism.

tool palette

Mlcqlmlm: Valm Ibr altcqlmb -tJ ' - .

i
I object b m i i ~ m l . ~

model w indow ,,

L..-label window
Figure 2 : Link between formalisms and model in Macao.
Figure 2 illustrates the re]ation between a formalism

description and related models. Classes declared in the for-
malism are described in the tool palette (top o f Figure 2).
Users can select one o f them and create instances in the mo-
del (a model object) in a window that contains a model des-
cription (bottom left in Figure 2). It is then possible to edit
labels related to this objects and declared in the correspon-
ding class description.

Hierarchical m o d e l

, m • Upper page

m i n t Inner page
ILa

g r a p h o f the ful l d e s c r i p t i o n
A representation of

~ upper page

repRserttafion off the box

represert ta tionf o f ~ , ~
the inner page

2.b
Figure 3 : Structure e ra hierarchical formalisn~

Formalisms may be composed when they arc hierarchi-
cal. In that case, some nodes are associated to another for-
malism. These nodes (called ~boxes))) can be ~opened~ to
display its content in a new page. Models are thus corn-

Ada Letters, Sept~Oct 1998 Page 58 VolumeXVII, Number 5

posed of pages; each page is a part of the model.
Figure 3 shows how it works. In Figure 3.a, an node in a

page is associated to another page. The description of the
model structure (Figure 3.b) is an oriented graph in which,
nodes represent pages and, edges links between a box and a
pa.ge. So, hierarchical graphical descriptions are described
using a set of (fiat) formalisms.

2.3. D a t a m a n a g e m e n t

The data management axis deals with both data storage
in a repository and data representation. To cooperate, tools
use intermediate files to exchange data. However, they are
usually not designed for data exchange with foreign softwa-
re. Data translations must be performed : some integration
techniques rely on the addition of a software layer called
driver [I] or capsule [7, 17]. For communication, the use of
an internal Data Definition Language (DDL) makes this
translation process easier and supports heterogeneity
between tools (for example, the use of discrete program-
ruing language).

A common DDL, implemented at the platform level,
provides an indirect but standardized communication
between tools allowing an easy maintenance of the tool set.
Adding or modifying a too] needs only to update one inter-
face between the tool and the platform. Tool maintenance
is performed apart f rom the host platform. The tool evolu-
tion is hidden by the communication driver.

Tools need to store persistent data which may be shared.
The environment has to provide a set of functions to mana-
ge such data. When the number of shared files grows, the
use of a shared object database is the most interesting solu-
tion [12]. However, this solution is heavy to implement and
we propose a simplified model that is suitable for building
a simple platform like FrameKit.

FramcKit provides a model for both large grained and
fine grained data :

• Large grained data are information components like
models, results or any other information managed by
tools (libraries, preferences etc.). FrameKit proposes
discrete types of large grained data and store them using
sample repository functions;

• Fine grained data are fine information components like
element in the model (nodes, edges, their relations and
their labels). Fined grained elements dare stored using
elementary messages.

2.3.1. L a r g e g ra ined da ta

Large grained data are information components like mo-
dels, results or any other information managed by tools 0i-
braries, preferences etc.)

FrameKit types large grained data using tool-defined
keys and behaviors. Tool-defined keys are keywords used
to find out an information in the FrameKit repository. The
platform uses this information but does not have any
knowledge of the corresponding semantics. Three types of
data behavior correspond to three persistency approaches :

• model-associated data concern all the information asso-
ciated to a model. It is useful to properly handle version
management : when a model changes, associated results
become obsolete and should be deleted and re, computed
if needed. Such data are stored with the model descrip-
tion in a cell s tamped by its last modification date. The

cell is destroyed when the model is updated;
• user-associated data concern all the information related
to a user (preferences, information potentially shared by
models...). This information remains reachable until the
user is deleted;

• g lobal data concern all the information related to a
CASE environment. It is stored in cells that may be
associated to a tool, a formalism or to the platform itself
(adminisU'ation data only). Data last as long as the entity
(tool, formalism or platform).
To implement these discrete behavior, a proper use of di-

rectories is sufficient. Global data is stored in a directory
potentially shared by all users and tools, user associated
data is stored in a user associated directory. Finally, model-
associated data is located in a directory that last as long as
the model does not change.

2.3.2. Fine grained data

Fine grained data are fine information components. To
ease both their storage and handling, FrameKit implements
a message based approach. Each element in the model (no-
des, edges, their relations and their labels) are stored using
elementary messages

Message, s describe elementary actions like ~create a new
node numbered nt having class N>>, ~associate nodes nt and
n2 by means of a connector ct f rom class C~, ~associate a
textual label named A and having value X to node n]~> etc.
This description technique is generic because it works re-
gardless any knowledge of the corresponding formalism.
the name of classes arc defined using strings and instances
of classes are named using integers.

FO(13:OrientedGraph)
~(2, 6, 12)
~(4:node, 4)

~(4:node,3)
CT(4:name, 3,1:c)
~(4:node, 2)

2 CT(4:name,2,1;a)
~(3:arc, 5,2,&)
~(3:arc,6,2,3)
~(3 :arc, 7,3,4)
CT(9:valuation, 7,1:2)

~gmee 4 : OrientedGraph model and its corresponding
internal description.

Example I: Let us cousider a small model defined using the e[e-
mentary formalLvm OrientedGraph (Figure 4).
Its definition is transported using simple messages that carry
out syntactic aspects only. instruction CN create a new ins-
lance o f the referenced class. CA in,vtanciates a new connec-
tor o f the referenced class. CT affects a value to labels on
arcs or nodes. Please note that object instances are named
a,ving a unique object identifier provided by Macao (tu:re,
node labeled a has id 2). Tool have to use this iden~ier to
access obj[cLs.
FO is used to identify the formalism and VM the version of
this formalism. This information is used for check by tools
only.

This mechanisms relies on ASCII information only,
which is a way to solve mos t portability problems as well
as exploitation of data by programs running on discrete tar-
get architectures without having to use XDR mechanisms.
In fact, in FrameKit, all data are stored in ASCII format.

Aria Letters, Sept~Oct 1998 Page 59 Volume XVIII, Number 5

2.4. Env ironment

The envi ronment axis supports the fol lowing points :
• association of an Opera t ing Sys tem ~conunand tinct, to

a service (i.e. a given compi le r is associated to the ser-
vice compi le and is invoked a given way);

• encapsulat ion o f the Operat ing Sys tem functions like
program invocation, p rog ram communica t ion , naviga-
tion through the reposi tory sys tem etc.;

• definition of a diffusion mode l to facili tate installation
and evolution of the environment .
The first point is s t rongly related to the m a n a g e m e n t o f

services. It is the set o f low-level mechan i sms required to
support services as they appear to the user.

The second point is impor tant to support tool integrat ion
as well as tool implementa t ion . It should be proper ly imple-
mented in the APIs used to p rog ram in such an environ-
ment. O f course, a level o f abstract ion is necessary in order
to enforce portability. This is impor tant for mul t i -p la t form
implementa t ion and diffusion.

For example , in FrameKit , w e have implemen ted the fol-
lowing functions :

• A high level communica t ion mode l has been defined :
several implementa t ion are p roposed (some m a y have
restrictions). Then, any sof tware c o m p o n e n t able to sup-
port one of these implementa t ions should be easi ly inte-
grated in FrameKit ;

• A high level t ransmiss ion o f informat ion by means o f
messages is built on top o f the communica t ion model ,
l ike the M a c a o widget- l ike mechan i sms to m a n a g e inte-
raction with users;

• A reposi tory offers s torage services. This reposi tory
hides File sys tem related mechan i sms (file naming sys-
tem...).

Oov op n 1 Vovolopm 2 Vev opmon

j *" .
archL1

FrameKit client
Figure 5 : Example o f the diffusion mode l

The third point is also impor tant because it p roposes a
f r amework for the evolut ion o f the envi ronment . The diffu-
sion approach we p ropose rely on kits . A kit is an e lemen-
tary installation c o m p o n e n t that contains e lements to be
installed by a specif ic adminis~a t ion tool. There should be
four types of kits :

• P la t form kits contain executable and data o f the envi-
ronment (administrat ion tools, communica t ion libraries
etC.),

• Formal i sm kits contain all the definition of a new for-
ma l i sm in an installed environment ;

• Tool kits contain informat ion to install new tool and its
associated set o f services (executable files, initial data
etc.);

• Cus tom kits for local upgrade o f any e lement (p la t form
executable, tool executable etc.); it enable the construc-
tion o f patches that fixes bugs o f a previous distribution.

Example 2: Figure 5 proposes an instanciation o f the diffusion
model we propose. Let va imagine that a software enginee-
ring environment ~ being developed in discrete places. Such
a diffusion strategy enables :

a distribzaed upgrade o f kits (developers only upgrade kits
they are responsible of),
a c ~ t o m in, ctallation by clients (each client picks up what
he needs).

3. Implementing Tools to CustomiTe
F r a m e K i t

3 .1 . S t r u c t u r e o f a t o o l d e s i g n e d f o r F r a m e K i t

To hide target architecture related mechan i sms (and
mee t p la t form integration), all presentat ion, data, control
axis should be implemen ted and avai lable for applicat ions
by means o f Appl icat ion P rog ram Interfaces (API).

Thus, tool designed to run in the target env i ronment take
benefits f rom these APIs . T o mee t this requirement , three
A P I corresponding to the three axis presented in
Sect ion 2. I . The a lgor i thmic part o f the p r o g r a m should be
d isconnected f rom the env i ronmen t and relate with it only
by means o f the APIs (Figure 6).

Figure 6 : Architecture e t a tool designed to run in the software
environment (a priori integration).

All implementa t ion in F r ameKi t fo l low this strategy and
even then ~main~ p rog ram o f appl icat ions is a par t o f the
F rameKi t libraries. This enable to a lways correct ly initiali-
ze all required resources to opera te the three A P I ' s and call
the ~tool ma in program>> wi thout hav ing to change initiali-
zation directives over the FrameK.it versions. Only a new
binding with APIs l ibraries is required. Th/s sUrategy is also
used for administrat ion tools (that uses s tandard A P I but are
considered as a par t o f the p la t form) as well as p la t form
programs .

3 .2 . A p o s t e r i o r i i n t e g r a t i o n i n F r a m e K i t

Tools to be a posteriori in tegrated in the type o f environ-
men t should be d isconnectable f rom their user interface.
Discrete techniques could be cons idered according to the
set o f avai lable informat ion developers p rov ide on their
software.

I f source code is available, it is poss ib le to adapt it to fit
the A P I descr ibed in the previous section. Then, the result
is s imilar to an a priori integration. However , it should be

Ada Letters, Sept/Oct 1998 Page 60 Volume XVII, Number 5

avoided for tools for which implementation is not control-
led by the integration team : the integration work has to be
done when a oew version is released.

I The Generic environment I
* A

I driver
p r o c e s s that
drives the tool

tool

(only art executables
files are provided)

, 4k
l m l l l l l l l l m l l
m

a b
Figure 7: Possible architectures of a posteriori

integrated toola.
I f only executable file is available (plus information

about exchange formats), it is possible to drive the tool by
means of a specifically implemented process (Figure 7.a).
The environment only knows about this process which ar-
chitecture is the one defined in Figure 6. The driver and the
tool communicates by means of any mechanism encapsula-
ted in the environment (see environment axis).

I f tool libraries are provided (plus description of data
structure), they can be directly linked to a driver to make a
unique executable file (Figure 7.b).

In both cases, the driver translate information in the re-
quired format and then, translate back results for display by
means of the user interface.

3.3. A p p f i c a t i o n o n a t o y e x a m p l e

So, for both tool construction or tool integration, the im-
plementation work is reduced to write an application using
the standard FrameKit API. We propose to detail the Ada
based way to implement a new tool in FrameKit.

We first describe the tool to be implemented and then
describe its implementation. Source code fully provided,
separated by explanation and comments. Some execution
screen shots are provided to illustrate how the FrameKit en-
vironment behaves according to the corresponding stimula-
tions.

3.3.1. Presentat ion o f the e x a m p l e

Let us consider the Graph formalism. This formalism
describe graphs and is composed with :

• a "node" class,
• a "edge" connector,
• a " a r c " c o n n e c t o r .

both connectors can relate nodes between them. Two la-
bels are associated to these formalism objects (nodes, edges
and arcs): "name" and "value". Five global labels
("author(s)", "version", "information", "project" and "title")
provide information about the model. Figure 8 shows how
Graphs are managed by the Macao User Interface : nodes
are represented by a circle, edges appear as a line and arcs
look like an arrow. The formalism description takes about
fifteen minutes, which is definitely shorter than designing a
new graphical interface.

The tool we want to build has to check if there is a con-
nector between two nodes designated by the user. The tool
has a verbose option that ask for the user name (in order to

provide him with a more convivial answer). There are two
ways to invoke it :

p orm mode
too~_~example <frameldt_config_param> [-verbose]
standalone mode
tool_example-s [-verbose] obj_idl obj_id2

l l B B l l l l "°
F.KoJ4oz .d~tJEET Hoje~

emtmpk vl.O

this is ~ e.~mple

m°deL "11" ~ _ _ _ _ _ ~
w i n d o w ¢ ~ 8.

Figure 8 : The graph formalism and a model.
Two additional parameters are required in standalone

mode because the tool runs without user interface. These
parameters supply the application with Macao object iden-
tifiers.

3.3.2. T h e generic main p rov ided by F r a m e K i t

As mentioned in Section 3.1. applications' main pro-
gram is a part of the FrameKJt libraries. It is a generic Ada
procedure for which the following generic parameters have '

to be provided :
• 'n~Ac~._KrL,~_mL~ is a string used to generate the trace
file name (if traces are displayed in the application),

• r S _ _ ~ ~ P ~ 3 R T ~ 3 is a boolean that indicates
if the tool can be executed in standalone mode,

• X ~ L A ~ R X T m ~ is a reference to the main procedure
of the application,

• ~ 3 O L ~ is the tool name in the FrarneKit environ-
ment,

• ~"ooI~..,7~rOzq is the tool version in the FrameKit envi-
ronment,

• TOO~COPYRICmT is a tool copyright automatically dis-
played at launch,

• X r T ~ is the name of the kit in which the tool will be
integrated (used in the distribution procedure),

• O N _ L ~ 9 is a one line help displayed when the
tool crashes (i.e. a non FrameIGt exception is raised),

• FK_I I~ IRtTP~ I C E q _ ~ . _ I U_INI T_H~LER_.~S'I~V/
is a reference to the procedure that initialize the inter-
ruption handler manager,

• FK ~n'p.aCRr.TPI'ZON_Ttt~LIU_HANI:ff_J~g is a reference to
the procedure to invoke when an interruption is provo-
ked from Macao.
A default value is associated to the three last parameters.

They are respectively : the "no help available" string and
two procedures that do nothing (it is then assumed that the
service will be declared as non-interruptible).

Ada Letters, Sept/Oct 1998 Page 61 Volume XVIII, Number 5

3.3.3. I m p l e m e n t a t i o n o f i n t e r r u p t i o n h a n d l e r s

Let us n o w def ine a package for manag ing execut ion in-
terruptions. The package speci f icat ion is provided herafter :
w J . t h F K . _ . S T R I N G S , FK_. .API D A T A _ . M A N A G E I ~ T ;
u l l e F K _ S T R I N G S , FK._ .API_DATA__MANAGEMmqT;

] ? e , = k a g e TOOL_EXAMPLE_HANDLER ~m
- The type that defines poss ible actions supported b y the
- interrupt handler .
the HANDLER_OPERATIONS A s

!DEPAm~T, -- n O t ~
DISPLAY__MZSSAGE) ; - - d i s p l e y o f a me.ssa~e

- N e w primitive that allows a tool designer to change the
action to perform at interrupt.

D~oaeduEi SET_HANDLER_TREATMENT
(WHAT_TeD0 : An HANDLER_OPERATIONS);

-- Primitives required if interruptions are supported
pEEOO~tUEO SET_HANDLER;
p E c ~ o INTERRUPT_HANDLER

(TOOL_NAME : in STRING) ;
and TOOL_EXAMPLE_HANDLER;

The type HANDr.R~...OPERATICaqS is useful w h e n discrete
interruption treatments should be handled by the tool accor-
ding to the current execut ion phase (for example , w h e n the
same program provides several services) . The
SET_HANDLER procedure set trealment to default and
SET_HANDI.~._TREATM~IqT (not required) a l lows to change
the current treatment. W e provide b e l o w the body associa-
ted to rNTERRUPT.._HANDLER.
prc~n~e INTERRUPT_HANDLER

(TOOL_NAME : An STRING) il

beg:Ln
o a s a REMIND_TREATMENT_~_DO All

w ~ DEFAULT =>
mall; -- we do nothing;

w ~ DISPLAY_MESSAGE =>
FK_PUT_MSG (MESSAGE => "Canceled",

HISTORIC => TRUE);
aasm;

en~ INTERRUPT_HANDLER;

In that proced.re, ~ TSEATME~r~TO DO is a glo-
bal variable of package TOO T.~ that select
the current treaUnent to process by Y . N T E R R U P T ~
The primitive FK_PrJT_.lVlSG is a part o f the PrameKit API
and displays a m e s s a g e either on the current terminal (stan-
dalone m o d e) or in the M a c a o historic w i n d o w .

3.3.4. P r o g r a m m i n g t h e too l

W e n o w illustrate, using the implementat ion o f the tool,
the use o f the API primit ives to manipulate the FrameKit
environment. Basical ly , any tool has to use the three major
standard A P I : F K . . ~ X _ _ I 3 A T ~ handles the
Data M a n a g e m e n t axis, FK_APX_USER_.X~,rea~FACE that
handles supports the User Interface axis and
FK A P I _ E N V ' T ~ ~ C A T I C ~ supports the Envi-
ronment axis (as they are both presented in Sect ion 2.1.).
There are also numerous available standard tools available
(mult i - language m e s s a g e management , lists, tree, etc.).
wAth FK_API_DATA MANAGEMENT,

FK_AP I _ENV I RONMH~F~ COMI47JN Z CAT I ON,
FK_AP I_US ER__INTERFACE,
TOOL_EXAMPLE_HANDLER,
CHAINES_VARIABLES ;

use FK_AP I_DATA._MANAGEMENT,
FK_AP I_ENVIRONMENT COMMUN I CAT I ON,
FK API_USER INTERFACE,
TOOL_EXAMPLE_HANDLER,
CHAINES VARIABLES ;

pEC~UEe TOOL_EXAMPLE_BODY il

-- Local var~bles to be used in the example

VERBOSE_MODE : BOOLEAN : = FALSE ;
CRT__ARG : POSITIVE := i; -- colm~n~ar~s
SELECTED_NODE_I : FK_OBJECT_IDENTIFIER;
SELECTED_NODE_2 : FK_OBJECT_IDENTIFIER;
NAME : VSTRING : = TO VSTRING ("user") ;
MODEL : FK_MODEL_DESCRIPTION;
PAGE : FK_PAGE_DESCRIPTIDN;

An automatic trace sy s t em can be enabled and disabled
automatical ly us ing respect ive ly ~ T R A C E and
Ht.DTSABLE_TRACE procedures. There are numerous trace
c lasses def ined for the platform and a set o f trace c lasses
available for tool des ign (in this example , KFK__TRACE_MA_~
is used). The FK__PUT_n%_TRACE procedure is the one that
display traces for a g iven trace class. Traces are strings
written into a f i le automatical ly created at first need, accor-
ding to the information provided in the TRACE__FILE._NAME
generic main parameter (see Sect ion 3.3.2.) .

T w o procedures a l low to access c o m m a n d l ine argument
transparently (e.g. wi thout having to consider that platform
parameters m a y be inserted before too l parameters) :
FK..AS-O_CCXmT and FK..A~_VALUE that behaves l ike we l l
k n o w n Unix a r g c and a_rgv.
b e g a n -- for T O O L _ E X A M P L E _ B O D Y

FK_E~qAflLE_TRACE (KFK__TRACEMAIN) ;
~OE I in 0 .. FK_ARG_COUNT - 1 Ic~p

FK__PUT_IN_TRACE (KFK_.TRACE MAIN,
S = > "argument number" &

I/qTEGER'IMAGE (I) & ASCII.HT &
[]= •'" & FK__ARG_VALUE (I) &) ;

~n4 icy;
-- The m v i n m m e n t is n o w correctly set and the except ion
- - handler is operational w i t h a defaul t action. Let us check
-- parameters
~f FK_ARG COUNT > CRT__ARG th~

&£ F K . . A R G V A L U E (C R T A R G) = " - v e r b o s e " t h a n
V E R B O S E _ M O D E : = T R U E ;
C R T _ A R G : = CRT A R G + 1 ;

mlslf FK__IS IN FRAME XIT t ~
-- in PrameKi~ "-verbose" is the only parameter
FK_PUT_ERROR (MESSAGE => " " • • &

FK_ARG_VALUE (CRT_ARG) &
• " [] : bad parameter (FrameKit mode) " ,
EMPHASIS => FALSE);

-- to s ignal a problem
EnAme FK PROCESSED WITH_PROBLEM;

mad £~;
~i £f;

T h e t o o l w e d e s i g n r e q u i r e s to w o r k o n d e s i g n a t e d o b -
j e c t s . These objects are provided by the M a c a o user Inter-
face, w e have thus to cons ider two discrete ways to extract
them : us ing the standard A P I w h e n the tool runs under Fra-
meKi t and via the c o m m a n d l ine w h e n the tool runs in stan-
dalone m o d e (this funct ion cannot be emulated) .

The FK_IS_,MDDE_.STANDALONE funct ion a l lows us to
k n o w in w h i c h m o d e w e are running. Then, objects identi-
fiers are converted f rom the values extracted in the c o m -
mand-l ine . I f less than t w o p a r a m e ~ r s arc provided, then an
error is displayed us ing the FK_PUT__ERROn_~ESSAGE primi-
t ive and the except ion FK_PROCESS~3_WTTH_m~3~T.~ is
raised. This except ion is a c o m m u n i c a t i o n standard in Pra-
meKi t to provokes a premature exit. This except ion is cau-
ght at the main level and informat ion is provided to the
env ironment to signal that execut ion w a s aborted.

-- Get des ignated objects (on the c o m m a n d l i n e i n standalone,
- - u s i n g F r a m e K i t otherwise)
Af FK_IS_MODE_STANDALONE t ~

-- w e run in s tandalone m o d e
~£ FK__ARG COUNT > = CRT._ARG + i t ~

SELECTED_NODE_I : =
FK_STRING TO OBJECT_ZD

Ada Letters, Sept~Oct 1998 Page 62 Volume XVII, Number 5

(FK_.AR~_VALUE (C R T _ A R G)) ;
SELECTED__NODE_2 : =

FK_ STRING_TO OBJECT_ID
(FK_ARG_VALUE (CRT_ARG + 1} } ;

~ t . e o n
CONSTRAINT_ERROR =>

FK PU'~ERROR (MESSAGE =>
'Big argument problem",
EMPHASIS ffi> FALSE);

galas FK_PROCESSED_WITH_PROBLEM;
end;

e l s e
- two nodes should be identified
FK PUT_ERROR (MESSAGE =>

"Two objects required",
EMPHASIS => FALSE);

raJ.se FK_.PROCES SED WITH PROBLEM;
end I£;

e l s e
In FrameKit mode, it is simpler because designated ob-

ject identifiers are directly provided using the
FK._GET_A_DESZGN~r~_OJ~,.TECT primitive. Tests are also
simpler because Macao forbid the service execution as long
as no object is designated. W e thus only have to check that
at least two objects have been transmitted (information pro-
vided by F K . _ G E ~ ~ O F . _ D E S I G ~ W , TP.aJ_OB,J-ECT~).

-- running in standalone mode, Macao does not invoke
- the service if no object is selected
££ FK_GET_NUMBER_OF_DESIGNATED_OBJECTS < 2
then

FK_PUT_ERROR (MESSAGE =>
"Two objects requires",
EMPHASIS => FALSE);

Ea&se FK__PROCESSED WITH_PROBLEM;
mls££ FK_GET NUMBER_OF_DES I GNATED_OB J ECT S

• 2 then
FK_PUT_WARNING (MESSAGE =>

"extra objets are discarded',
EMPHASIS => FALSE);

a n d £ £ ;
S E L E C T E D _ N O D E _ i : --

FK__GET_A_DESIGNATED_OBJECT (1) ;
SELECTED__NODE_2 : =

FK_GET_A_DESIGNATED_OBJECT (2) ;
end ££;

At that stage, the we can work on the model . Let us no-
rice that interruption is checked periodically to reduce the
hypothesises on the compiler implementation (it causes an
I/O in the FrameKit software bus). It is also a way to set
when interruptions can be supported by the tool. Here, we
consider that the tool enter in a phase for which the
display_message treaUnent is associated to interruptions.

- check for interruption signal
FK_CHECK_FOR_US ER_INTERRUPTION;
- let u s con s i d er that w e p r o v i d e a m e s s a g e w h e n e x e c u t i o n
- i s cance led
SET_HANDLER_TREATMENT

(WHAT_TO_DO => DISPLAY_MESSAGE) ;

The Verbose mode introduced in our example provides a
good illustration o f user interaction. The primitive
FK_GET_A_LI~ ask for a one line text via the User Interfa-
ce (a specific dialog window is created to input the line).
Other primitives al low to handle multi-line texts, item se-
lection within a list and standard dialog boxes. All I/O in
FrameKit are bandied by the User interface. Tools activate
these functions using vidget like messages. In standalone
mode, an A S C H emulation is provided.

-preparation of verbose mode
I£ VERBOSE__MODE then

d e . " l u e
CONTINUE : BOOLEAN;

begin
- Get the user name

FK_GET_A._LZME (MSG =>
"Please give me your name",
RESULT => NAME,
NO_CANCEL => CONTINUE,
TITLE => "Demand") ;

J.E not CONTINUE ~h~
-- user has ¢|icked on CANCEL. We retaure the default
- v a l u e
N A M E := NAME;

m~l ££;

i£;

Models are stored in PrameKit by means of elementary
messages, as described in Section 2.3.2. These messages
are handled via an API in order to avoid a direct manipula-
tion o f these messages. Acquisit ion o f the description is
performed via the FK. ACQUIR~MOD~_FRC~. DISK primiti-
ve. T h e n , the user may access separately to pages (in this
example, there is only one root page because the formalism
is flat). When a p a g e description is loaded, access to objects
is performed either one by one (via their position) or using
their internal identifier.

When an object description is extracted, three primitives
a l low to get information :

• F K . . G E ~ I T Y _] 2 ~ 3 ~ T T O N provides all information
on the object : its class, its type (is it a node or a connec-
tor) and its identifier,

• ~ , . . G E ' ~ m~,DS is dedicated to connectors descrip-
tion and provides the Macao identifier for the two con-
n e c t e d a r c s ,

• FK_GE'Z..~T~TBUTB_V'ALUE (not invoked in our exam-
ple) provides the value associated to a label as a string
list.
In the source code below, w e check i f designated object

are o f the appropriate class (the user has to select nodes).
- acquire model (fiat = one page only)

FK_.ACQUIRE_MODEL FROM_DISK (MODEL) ;
FK_GET_ROOT_PAGE (MODEL, PAGE);
-- acquire object descr ip t ion and check objects va l id i ty
d e © l L T e

DSC_OBJ : FK_LST_CAMI_MSG ;
NODE_CLASS : VSTRING;
ENT_TYP : FK_OBJECT CLAS S I F ICAT ION;
~qT_I D : FK_OBJECT_IDE~qT I F I ER;

beg£n
DSC_OBJ : = FK GET_OBJ_DESC

(PAGE_DESC => PAGE,
ID OBJ => SELECTED_.NODE_i);

FK GET_ENT ITY INFORMAT ION
(FULL_DSC => DSC_OBJ,
ENTITY_CLASS => NODE_CLASS,
ENTITY_TYP => ENT_TYP,
ENTI~_ID => ENT_ID);

££ ENT_TYP / = KFK NODE and thee
TO_STRING (NODE_CLASS) / = "node" then
FK PUT_ERROR (MESSAGE =>

"First object is not a node",
EMPHASIS => FALSE} ;

ca£ae FK_PROCESSED_WITH_PROBLEM;
end ££ ;
DSC_OBJ : = FK GET_OBJ_DESC

(PAGE_DESC => PAGE,
ID_OBJ => SELECTED_NODE_2) ;

FK GET_ENT ITY_INFORMAT I ON
(FULL_DSC => DSC_OBJ,
ENTITY_CLASS => NODE_CLASS,
ENTITY_TYP = > ENT TYP,
ENTITY_ID => ENT_ID);

£ f ENT_TYP / = KFK_NODE and then
TO_STRING (NODE_CLASS) /= "node" then
FK_PUT_ERROR (MESSAGE =>

"Second object is not a node',
EMPHASIS => FALSE);

Ada Letters, Sept~Oct 1998 Page 63 Volume XVUl, Number 5

Ea£se FK_PR0 CES S ED_WI TH_PROBLEM;

end;

In the source code below, we parse all connectors in the
description and check their ends. Function
F K _ G ~ _ ~ S _ ¢ O ~ O ~ returns the number of connectors
located in a page (there is a similar function for nodes). Pri-
mitive ~_G~_CO~.X:TOR_N_DSC extract the N = connec-
tor description.

Note that primitive ~ _ PUT_~G used when connector
search has been sucessful displays a message associated to
the object. In fact, objects will be designated in the User In-
terface when the message appear.

-- Searching for the arc that relates these t w o nodes
declare

ARCS : NATURAL : =
FK__GET_NB_CONNECTORS (PAGE) ;

DSC_~C : FK_LST_CAMI_MSG ;
STARTN, ENDN : FK_OBJECT IDENTIFIER;
ARC_CLASS : VSTRING ;
ENT~YP : FK__OB JECT_CLAS S I F I CAT I ON;
ARC_ID : FK_OBJECT_IDENTIF IER;
FOUND : BOOLEAN := FALSE;

b e g 4 n
while ARCS > 0 loo~

DSC_ARC : = FK GET_CONNECTOR N_DSC
(PAGE_DESC => PAGE, POS => ARCS} ;

FK_GET_ARC_ENDS (DSC_ARC, STARTN, ENDN)~
££ (STARTN = SELECTED_NODE_i mu~

ENDN = SELECTED_NODE_2) ez
(ENDN = SELECTED__NODE_i ned
STARTN = SELECTED_~TODE 2) then

- - We .found it, d i s p l a y o f r e s u l t s
F K . _ G E T _ E N T I W Y _ I I V F 0 1 ~ A T I O N

(FULL_DSC = > DSC__ARC,
ENTITY_CLASS = > ARC_CLASS,
ENTITYTYP => ENT_TYP,
ENTITY_ID => ARC_ID) ;

FK_PUT_MSG (MESSAGE => "Message for "&
TO_STRING (NAME) &
": this arc (type " &
TO_STRING (ARC_CLASS) & "}
relates designated objects',
NUM_OBJ => ARC_ID);

FOUND := TRUE;
e x i t : ; - - u s e l e s s to v i s i t o t h e r n o d e s

end £f ;
ARCS := ARCS - i;
FK_CHECK_FOR US ER_INTERRUPTI ON;

end Ioo~;
if not FOUND then

- - N o arc h a v e b e e n f m m d
FK__PUT_MSG (MESSAGE = >

"Message for "& TO_STRING (NAME) &
" : sorry, no arc between objects ",
EMPHASIS => FALSE,
RESULT => TRUE,
HISTORIC => FALSE);

en~i if;
en¢1;
FK_DISPOSE_MODEL (MODEL) ;

end TOOL_EXAMPLE_BODY;

3.3.5. Conf igurat ion o f the gener ic m a i n

We thus instanciate the PrameKit generic main in order
to get an executable program :
w£th TOOL_EXAMPLE_BODY,

FRAME_KIT_GENERIC_MAIN,
TOOL_EXAMPLE_HANDLER;

use TOOL_EXAMPLE_HANDLER;

pzecedtMro TOOL_EXAMPLE £m
FRAME_KIT_GENERIC_MAIN

CTRACE_FILE_NAME => "Tool_example",
IS_STANDALONE_SUPPORTED => TRUE,
MAIN_ALGORITHM => TOOL_EXAMPLE_BODY,

TOOL_NAME => "tool_example",
TOOL~rERSION => =I.0",
TOOL_COPYRIGHT => "F.Kordon & J-L.Mounier",
KIT_NAME => "EX",
ON L~NE_HELP => " tool_example- . . [-verbose] ",
FK_INTERRUPT I ON_FROM_IU INIT_HANDLER SYSTEM

=> SET_HANDLER,
FK ~NTERRUPT I ON_FROM_IU_HANDLER

=> INTERRUPT~4ANDLER) ;

3.3.6. D e d a r a t / o n o f the new serv ice

The portion of service menu related to this example is
shown in Figure 9. It is composed with a terminal to invoke
the tool (a... execution~) and a submenu for options. All
items in an option list are check marks that can be set (or re-
set)

Figure 9 : Appearance of the service submenu.
The Service is declared as ToolExample . TooIExample

is a hierarchical entry composed o f one terminal item and
an option list. The terminal entry associates the executable
file, its parameter, its external name (language dependent)
and its internal name (unique identifier for the menu).

To enable multi-architecture management as well as an
easy installation procedure, service environment variables
are introduced and represent absolute paths dynamically
computed at invocation time. Here, FK._TOOLS_ROOT is
computed using : 1) the FrameKit repository root (set du-
ring the installation procedure), 2) the related formalism
(tools are sorted by formalisms), 3) the execution architec-
ture. The path indicated after this variable reference is a re-
lative path.

In the description below, access permission are set to the
user me, the group list privilege. Apparently, the tool is only
compiled on Sun/Solaris and PC/Linux architectures (no
other architecture are set). Access permission can be incIu-
sive (authorized users/groups/architectures are listed) or
exclusive (unauthorized users/groups/architectures are lis-
ted).

Sometimes, users have to respect a procedure. For exam-
ple, they have to compi le first and then, if no error is repor-
ted, link can be performed. Such a sequence is handled in
FrameKit by means of service preconditions. Three tags are
associated to each internal service identification :

• LAUCHED_OE that returns TRUE if the associated program
has run correcdy,

• LAUNCHED_PB that returns TRUE if the associated pro-
gram has outlined a problem,

• N E V E R _ L A ~ that returns TRuE if the tool was never
launched.
Service preconditions can also be set according to values

o f session variables. Sess ion variables are strings set or re-
set by tools. They allow a more refined mechanism in the
management of available and unavailable menu entries
(service as well as options). In our example, the ToolExam-
ple service menu is unreachable until a service internally
named GRAPH_CHSOU~ is launched correctly (i.e. the tool
signal that its execution is correct).

The check mark c<verbose mode~, is associated to an
identifier (VERBOSE) in the item description. This identifier

Ada Letters, Sept/Oct 1998 Page 64 Volume XVII, Number 5

represents a variable that is either valued by "-verbose" (ac-
cording to the definition) or empty. This variable can be re-
ferenced in the command line associated to a service in the
EgECUTABZ~ command. The default value o f the parameter
(on or off) is provided in the execution (here, it is on).
t n I I I q Z e Z S _ I I ' Z r - !
B g G Z N

.gBRVZ,CIC (ISOm~-z-.~mM.l:NdlkZ,, ' Too l l ~wa l . lE l . l . e ')
ACCESS INCLUSIVE
USER ('w')
GROUP ('p~iviloge')
ARCHITECTURE (' ~LARXI' |
ARCHITECTURE (' P C _ L I ~ ')

ENI~ACCESS
BEGIN_PRECONDITION

Zd t .O 'mr - -n_Og (GI tAPH C I I ~ C I ~ R)
EN~PRECONDITION
B z l u r z c m ('L'BRNZa~.T... 'mouflon')
ACCESS INCLUSIVE
ALL_USERS

END_ACCESS
BEGIN_PRECONDITION
TRUE

END_PRECONDITI ON
EXECUTABLE ($ (F K _ T O O L S _ R O O T) ' EX/tool_examDle',

' $VERBOSE ' ,

COMM_NAMED_PI PE, TOOLEX)
PROTOCOL (S A F E)
QUESTION_INFO (STOPALLOWED, HISTORIC,

INFO_OBJECT, NO_FORMALISM)
END_~RVICE
SERVZCE (LST_~ ~UW, ' O D t : l . o n a ')
ACCESS INCLUSIVE
ALLUSERS

EN~ACCESS
BEGIN_PRECONDIT ION
TRUE

EN~PRECONDITION
8ElaVXCl l (C ~ C] [_ M a . K K , ' V e z] = o n e m a d e ')
ACCESS INCLUSIVE
ALL_USERS

END__ACCESS
BEGIN_PRECONDITION
TRUE

END_PRECONDITION
CHECK_MARK (ON, 'VIR.lf, O B E , '-ME--SO')

FJI] [:~SERVZC] I
~ i D _ m l g R v z c l g

IBiI~BlgltVZCE
IWD

3.3.7. A n idea about service execut ion

Let us assume that, after all the required stuff (connec-
tion, execution o f service GRAPI-LCHI~_KER etc.), service
• OO~EX has been activated in verbose mode. Figure 10 pro-
vides a partial screen shot when the query associated to this
option is executed.

The trace window (top right) displays state messages
provided by FrameKit and by the tool (is any). The service,
as declared in the previous section supports interruption and
thus, it contains a STOP button. At least one object is selec-
ted (node aa~ is apparently one o f them) in the model win-
dow (middle back) that is a necessary condition to activate
the service (its declaration mentions that complementary
objects are required). The input windows (bottom right) is
the one created when FK_G~__A_LDCB is executed. We as-
sume that the user typed aMes in the dialog box. He can
then either click on cancel (a default value is assumed by
the tool as programmed) or OK (((Me~ is then supplied to
the tool).

Figure 11 is a partial screen shot when the service is fi-
nished. We display the historic w indow (left) that contains

the execution information sent by the tool. Results are dis-
played in a specific w indow (bottom front) associated to a
set o f objects (here, the arc relating the two designated no-
des) that contain a message. This w indow allows to go from
result component to result component.

[.*unah~i,¢ sa.r'sri~ ° E ~ d o n ".

P1W~ give me UCU,U"

I I

Figure 10 : Execution, dialog.
From the programmer's side, a result component is ge-

nerated by primitives like FX._~n'_M..~; or FK. Ptrr_gp~O~
When result components are related to objects (or objects
label) the corresponding element is automatically outlined
and presented to the user. When no object is associated, the
text is displayed in the historic window.

It is also possible for a tool to generate new models or to
modify the input model.

¥.Faaeza ~ ye4eot

Lammhkql ser-v-I~ "E.xe,mttz~ ".
t~LJxampk, (1.0) bg F.Km'dorb L ~ (199110 (FFram~/~lt/tF
t'lleuwl • fro- Pit,: 'lids are (tupa wllge) relates des'ignated oh.
Dish s p a . mmsumml for ~ medel : 227 B l ~ s
,E.lel~tion duB"tt'ioe 1rot r~r-,rkm, : 9 s
lqo Iwob~m has been outlkwd IW 'the t0ol.
Updating n~nu from ser'vra, oond'K-Ions,

Hle rms ~

I ~ , fee ~ : this are (ape edg.) rolat.es
~ks'icnat,d .b~ots

Figure 11 : Execution, display of results.

4. C o n c l u s i o n

W e have presented in this paper the principles o f Frame-
Kit, a software platform dedicated to the rapid prototyping
of CASE environments. FrameKit is implemented in Ada
and provides API for an easy implementation o f new tools.
W e have illustrates the principle o f tool implementation
and declaration in FrameKit by detailing a small example.

The work presented in this paper is currently implemen-
ted and available on the Internet at < h t t p : / / w w -

Ada Letters, Sept~Oct 1998 Page 65 Volume XVIII, Number 5

a r c . l i p 6 . f r / f r a m e k i t > . I t has been used to quickly pro-
totype n u m e r o u s C A S E e n v i r o n m e n t (a b o u t 2 5 t o o l s d i s t r i -
b u t e d over 6 formalisms). The mos t important one is CPN-
AMI, a Petri net based environment dedicated to formal
specification and validation of parallel systems also ava/la-
ble on the Internet at <h~Cp://www-src.lip6.fr/cpn-
emi>. It is a collection of tools associated to three forma-
lisms (Petri Nets and two high level description : OF-Class
and H - C O S T A M [3]).

We have experimented FrameKit for more than two
years. The fastest tool integration is about ten minutes (it is
reduced to a tool declaration) and one the longest took 110
hours. Average tool integration time is about fifteen hours
for imported tools and less than half an hour for tools im-
plemented using FrameKit API.

Integration
% time (hours) I

Tool
nalllB

GreatSPN
(v 1.fi)

] l
I 6 0.2

CPNsimulator D b 110 1.5

BooleanCoo- D b 0.5
dition
CPNverifier D b 1

CPNunfolder D 10.5

Z~ CPNinvariant D b 12

• P PROD I 24
(v 3.2) l

EVRunfold I 4

PctriBDD D '~ 4.

PmttyG. raph [3
(dot)
LineatCha- D
racterization
OFC-vcfi fief D

--~ PN-loader D f
L)

PROD-ofc ! d I

• HCM-verifiex D l

HCM2PN D I
(prototype)

R e m a r k s

integration from executable files
0nly, performed using U . ix shell
language.
Highly interactive tool. Major revi-
sion due to changes in the manage-
rnent of interaction in FrameKit.

3.2 [ntegrated using Unix shell lan-
guage.

C).2 Combination of three tools uglued~
in a Unix sbeU script.

0.2 Integrated using Unix shell Inn-
gusqge.

D.2 Integrated after a recompilatinn
using C APIs.

D.5 Powefull but complex tool. Adap-
ted using a specific driver imple-
mented using Ada APIs.

B.2 Integration from executable files
0nly, perfonnmt using Unix shell
tangunge.

0.2 Integratad using Unix shell lan-
guaooe.

0.2 Adapted using a specific drives
implemanted using Ada APIs.

0.2 Integrated as is (it was implemen-
ted using C APIs)

0).2 I lntegrated as is (it was implemen-
ted using C APls)

0.2 Integrated as is (it was impleman-
ted using Ada APls)

0.2 Small adaptation of the integration
for Petri nets.

0.2 Integrated as is (it was impleman-
ted using Ada APls)

0.2 Integrated as is (it was implemen-
ted using Ada APls)

Table 1: Summary of tool integration to build CPN-AMI 2

I for inmgrau~l tools, D for Developped tools.
~. Adapted from AML our pmviom plalfurat
c. Reuslt of a cooperation with two other tmivenitics and thus not dcsisncd to

rum in Fnm~Kit.
d. This integration inheritates from the one done for Pel~ netn.

Table 1 summar izes the amount of t ime spent in the in-
tegration process to build C P N - A M I 2 (a full description of
these tools may be found in [14]). This corresponds to the
t ime required to get a first operational version, in order to

evaluate the interest o f the tool. Extra work may be required
to exploit enhanced functions. All imported tools (PROD,
ERVunfold, GreatSPN and dot) where integrated using the
technique illustrated in Figure 7.a.

For most tools, we only had to perform a small adapta-
tion (by means o f a shell script that centralize the emulation
o f inline invocations) and the declaration to FrameKit (des-
cription o f the Macao menu associated to the tool).

W e u s e F r a m e K i t to bu i ld demons tra tors in indus -
trial contracts . It is also used for two years in a master pro-
gram to illustrate concepts of middleware components. It is
used in a student project to practice their design and imple-
mentation.

S . R e f e r e n c e s

[1] J.M. Bernard & J.L. Mounier, "Conception et Mise en Oeuvre d'un
envirormemant sysl~me pour la mod61isation, ranalyso et ia t~alisafion de
syst~mes informatiques", Th~.,se de doctorat de rUnivm~it6 Pierre &
Marie Curie, 4 place Jussicu, 75252 Paris Cezlex 05, D~,cembre 1990
[2] J.Buxmn, "DoD requirements for Ada pmgranuning support enviro-
merits, STONEMAN", Dod High Order Language Worldng Group,
Febmaw 1980
[3] A.Diagno & F.Kordun, "A Multi Formalisms Pmtotyping Approach
from Formal Description to Implementation of Distributed Systems", in
proceedings of the 7th "International Workshop on Rapid System Pmtoty-
ping", N.Kanoponios Ed, ~ Pomp Soc Press, Greec___e, June 1996
[4] M.Dowson, "Integrated project support with ISTAR",
software, November 1987
[5] ECMA, "A Reference Model for F ramewmts of Stoftware Enginee-
rings Environments", ECMA report number TW55 (version 3), NIST
Report, April 1993
[6] C.Fumstmm & L.Ohlssun, "The ESF Vision of a Software Factory",
Proceedings of the International Confe ranceon Soltwam Development
Environments & Factories. Berlin, May 1989
[7] B.D.Fromme, "HP Encapsulator : bridging the generation gap", HP
Jounl~, June 1990
[8] C.Gerety, "HP softbench : a n e e generation of soRware develope-
ment tools", HP Journal, June 1990
[9] C. Hylands, E. Lee & H. Rookie, "The "Dycho User Interface Sys-
tem", The 5th Annual Tc i / rk Workshop '97, Boston, Massachusetts, pp
149-157, July 14-17, 1997
[1O] 1=. [Cordon & J-L. Mounier, "lFrameKit and the prototyping of CASE
environments ' , in proceedings 8th International Workshop on Rapid Sys-
tem Prototyping, N.Kanopoulos Ed, pp 91-97, ,~.H.t~. comp Soc Press,
USA, June 1997
[11] F.Kordon & J-L. Moulder, "Implementation of Genericity for custo-
mizable CASE ¢mvironments', to appear in proceed__ings of CARI'98,
Dakar, Senegal, October 1998
[I 2] J.Lonchamp, K.Benali , J.C.Derniame & C.Godart, "Towards assis-
ted software ¢nginceJing ¢nviromments", In formal ion and SoRwmm Tech-
nology, vo l 33, n ° 8, October 1991
[13] MARS-Team, "Macao Home page' , <http:/Iwww-src. l ip6.fr/
mscllO>
[14] MARS-Team, "The C P N - A M I environment (version 2.2.1)', <http-J
/www-sm.lip6.fr/cpn-ami>
[15] T. Mowbray & R, Zahavu, "The Essential CORBA: Systems Inte-
gration Using Distributed Objects", John Wiley & Sons, 1995
[16] Ptolemy Team, "The Ptolemy Kernel-- Supporting Heterogeneous
Design", RASSP Dig~ t Neesletter, vol. 2, no. 1, pp. 14-17, 1st Quarter.
April, 1995
[17] D.Schefstt~m, "System Development Environments : Contemporary
Concepts ' , in Tool Integration : environment and framework, Edited by
D.SchefstrBm & G. van den Brae.k, John W]loy & Sons, 1993
[18] A.Wassormun, "Tool Integration in Software Engineering Environ-
ments", LNCS 467 : "Softweum EalgineeJ'ings Eawimnenmts", pp 138-150,
1990

Ada Letters, Sept~Oct 1998 Page 66 Volume XVII, Number 5

